-
公开(公告)号:CN119850441A
公开(公告)日:2025-04-18
申请号:CN202510317059.1
申请日:2025-03-18
Applicant: 华侨大学 , 信泰(福建)科技有限公司 , 福建省万物智联科技有限公司
Abstract: 本发明公开了一种基于频域边界协同优化的沉浸式视频增强方法及装置,涉及视频处理领域,包括:获取待重建的压缩的多视点纹理加深度视频序列并输入到经训练的沉浸式视频增强模型;当前的待增强视频帧先经过特征提取模块,分别提取得到高频特征和低频特征;高频特征和低频特征经过频域增强模块,得到频域增强图像;频域增强图像和当前的待增强视频帧输入到边界增强模块,得到融合图像;融合图像和当前的待增强视频帧的相邻视频帧输入到时空可变形卷积模块,得到对齐后的融合图像,对齐后的融合图像经过质量增强模块,预测得到增强残差并生成对应的重建视频。本发明解决压缩伪影、边界伪影以及沉浸式视频的质量低等问题。
-
公开(公告)号:CN119762721A
公开(公告)日:2025-04-04
申请号:CN202510261796.4
申请日:2025-03-06
Applicant: 华侨大学 , 信泰(福建)科技有限公司 , 福建省万物智联科技有限公司
IPC: G06T19/20 , G06T9/00 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于语义与几何引导的多阶段Mamba点云补全方法及装置,涉及点云处理领域,包括:构建基于语义与几何引导的多阶段Mamba点云补全模型并训练,得到经训练的多阶段Mamba点云补全模型;多排序策略Mamba解码器单元包括依次连接的若干个阶段的多排序策略Mamba解码器;获取待补全的不完整点云并输入到经训练的多阶段Mamba点云补全模型,不完整点云经过Transformer‑Mamba联合的点云局部特征编码单元,得到编码特征,编码特征输入到稀疏点云生成单元中,得到稀疏点云;稀疏点云输入到多排序策略Mamba解码器单元中,得到解码特征,解码特征经过点云上采样单元,得到预测的完整点云,克服现有Transformer编码器‑解码器结构二次方复杂度和局部细节丢失的问题。
-
公开(公告)号:CN119478751B
公开(公告)日:2025-03-25
申请号:CN202510062002.1
申请日:2025-01-15
IPC: G06V20/30 , G06V40/70 , G06V40/10 , G06V40/16 , G06V10/44 , G06V10/74 , G06V10/762 , G06V10/774 , G06V10/80 , G06F16/583 , G06N3/0455 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于渐进式多源特征融合与对齐的人像聚档方法及装置,涉及公共视频智能分析领域,包括:构建人像聚档模型,在人像聚档模型中,对人脸图像、人脸模拟素描画像、人体图像、人体模拟素描画像的特征进行渐进融合,并通过伪标签聚类和相似度约束对齐人体特征与人脸特征,有效融合多源人像特征,生成渐进多源融合的行人特征;将待查询人员的人脸图像、人体图像及其相对应的人脸模拟素描画像、人体模拟素描画像输入到经训练的人像聚档模型,得到待查询人员的渐进多源融合的行人特征,并计算其与数据库中每个参考样本的渐进多源融合的行人特征的相似度,以进行人像聚档。
-
公开(公告)号:CN119180752B
公开(公告)日:2025-02-25
申请号:CN202411678685.5
申请日:2024-11-22
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06N3/08 , G06T3/4046
Abstract: 本发明公开了一种基于高效频域Transformer的轻量级图像超分辨率方法及装置,涉及图像处理领域,包括:构建基于高效频域Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型,图像超分辨率模型包括第一卷积层、亚像素卷积层、第二卷积层以及若干个高效频域Transformer模块;获取待重建的低分配率图像和上采样因子并输入经训练的图像超分辨率模型,先经过第一卷积层,得到第一卷积层的输出特征,第一卷积层的输出特征依次经过若干个高效频域Transformer模块,将最后一个高效频域Transformer模块的输出特征与第一卷积层的输出特征相加,得到第二相加结果,第二相加结果依次经过亚像素卷积层和第二卷积层,得到高分辨率重建图像。本发明克服现有Transformer方法计算复杂度过高的问题。
-
公开(公告)号:CN119068266B
公开(公告)日:2025-02-14
申请号:CN202411551042.4
申请日:2024-11-01
Applicant: 华侨大学 , 泉州圣源警用侦察设备有限公司
IPC: G06V10/764 , G06V10/74 , G06V10/774 , G06V10/82 , G06V20/52 , G06F17/16
Abstract: 本发明涉及图像处理与目标识别技术领域,公开了一种基于真伪标签一致性的跨模态行人再辨识方法及系统,方法包括:通过深度神经网络对可见光与红外光两种不同模态的行人图像提取特征向量;计算同模态、不同模态间的特征向量相似度,构建同模态、跨模态匹配矩阵,并进行归一化处理,生成同模态和跨模态归一化匹配矩阵;采用跨模态归一化匹配矩阵和同模态归一化匹配矩阵对真实标签进行投影,获得跨模态伪标签;优化真实标签与跨模态伪标签之间的Kullback‑Leibler(KL)散度,从而优化同模态和跨模态匹配矩阵,提升匹配矩阵对模态变化的鲁棒性,从而提升跨模态行人再辨识准确性。
-
公开(公告)号:CN119323805A
公开(公告)日:2025-01-17
申请号:CN202411876774.0
申请日:2024-12-19
Applicant: 华侨大学
IPC: G06V40/10 , G06N3/0464 , G06N3/084 , G06V10/32 , G06V40/20
Abstract: 本发明公开了一种动静正则混合采样的行人再辨识方法及系统,涉及公共安全智能视频监控技术领域。实践中,采样常独立于行人再辨识模型训练,导致训练过程采样的信息丢失不受控制,制约识辨准确性。为此,本发明设计了正则动态线性采样和静态线性采样混和方法,实现行人再辨识模型训练过程中联合优化采样效果,其中,前者通过归一化的可学习参数,以数据驱动的动态方式学得动态的像素组合权重;后者利用双线性变换来确定静态的像素组合权重,实现与数据无关的采样策略。本发明进一步设计了动静正则项,约束动态的像素组合权重与静态的像素组合权重之间的差异,控制可学习参数的自由度,更好地组合动静采样,减少传统单一静态采样过程中信息损失。
-
公开(公告)号:CN119299671A
公开(公告)日:2025-01-10
申请号:CN202411815010.0
申请日:2024-12-11
Applicant: 华侨大学
IPC: H04N19/103 , H04N19/96 , H04N19/119 , H04N19/126 , H04N19/127 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多阶段不规则编码单元划分的VVC‑SCC帧内编码方法及装置,涉及视频编码领域,包括:设计并训练基于多阶段卷积神经网络的编码单元划分预测模型;其次将输入的视频帧通过经训练的编码单元划分预测模型进行编码单元划分预测模型预测,输出当前帧所有CU的模式类型的预测概率;最后为不同的模式类别设置不同的阈值,根据预测概率和对应的阈值指导VVC‑SCC编码器进行编码,从而跳过不必要的模式类别的遍历。本发明解决现有的VVC‑SCC帧内编码方法编码时间长、编码器计算的复杂度高的问题。
-
公开(公告)号:CN119152215A
公开(公告)日:2024-12-17
申请号:CN202411667235.6
申请日:2024-11-21
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于梯度显著性感知的皱纹分割方法、装置及可读介质,涉及图像处理领域,包括:构建人脸皱纹数据集和人脸皱纹分割网络;将人脸皱纹数据集中的原始人脸图像输入到人脸皱纹分割网络,得到对应的皱纹分割预测图,计算原始人脸图像中的每个像素点的显著性,进一步计算得到原始人脸图像中的每个像素点的权重,基于原始人脸图像中的每个像素点的像素值及其权重和原始人脸图像对应的皱纹标注掩码图中的相应像素点的像素值构建梯度显著性加权损失函数,基于梯度显著性加权损失函数对人脸皱纹分割网络进行训练,得到经训练的人脸皱纹分割网络。本发明解决现有技术的人脸图像中皱纹被过度分割或错误分割的问题。
-
公开(公告)号:CN118506168B
公开(公告)日:2024-10-15
申请号:CN202410954584.X
申请日:2024-07-17
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06T7/13 , G06V10/40 , G06V10/54 , G06V10/776 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明公开一种基于多重特征网络的沉浸式视频质量评价方法及装置,涉及图像处理领域,包括:在沉浸式视频质量评价模型中,通过视频预处理网络对待评价的沉浸式视频包含的多个视点的纹理视频和深度视频进行视点筛选,得到筛选后视点的纹理视频和深度视频,通过时空特征提取网络对筛选后视点的纹理视频和深度视频进行特征提取并计算得到对应视点的纹理视频的质量分数和深度视频的质量分数;通过权重计算网络计算得到筛选后视点的时空轨迹权重,将筛选后视点的时空轨迹权重与对应视点的纹理视频的质量分数和深度视频的质量分数输入质量分数计算模块计算得到沉浸式视频的质量分数。本发明解决现有沉浸式视频质量评价算法效果较差的问题。
-
公开(公告)号:CN118609034A
公开(公告)日:2024-09-06
申请号:CN202411080625.3
申请日:2024-08-08
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于帧级时间聚合策略的沉浸式视频质量评价方法及装置,涉及视频处理领域,方法包括:通过帧抽样策略去除视频冗余信息,采用卷积网络对沉浸式视频(即多视点纹理加深度视频)不同区域进行多尺度特征提取;接着使用注意力模型对特征进行加权,通过帧级时间聚合策略自适应地筛选沿时间维度的质量分数;最终结合六自由度(Degree of Freedom,DoF)时空轨迹权重获取失真沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果,稳定性和鲁棒性高。
-
-
-
-
-
-
-
-
-