-
公开(公告)号:CN119107416A
公开(公告)日:2024-12-10
申请号:CN202411320983.7
申请日:2024-09-23
Applicant: 安徽大学
Abstract: 本发明公开一种基于混合特征的稀疏视角X射线光图像三维重建方法,利用梯度值作为权重来引导采样射线,使采样射线尽可能分布在变化较明显的区域;使用三平面分解特征和哈希编码特征进行混合,将混合特征送入衰减场预测网络预测衰减值,使用衰减权重预测网络(W‑NAF)预测X射线路径上每个采样像素点的衰减权重,通过这两个网络得到采样像素点处的衰减值和衰减权重值;通过累积沿采样射线的衰减值来生成预测的投影像素值,然后通过最小化预测投影和真实的X射线图像之间的差异来优化网络。
-
公开(公告)号:CN118411708A
公开(公告)日:2024-07-30
申请号:CN202410547825.9
申请日:2024-05-06
Applicant: 江淮前沿技术协同创新中心 , 安徽大学
IPC: G06V20/58 , G06V20/40 , G06V10/56 , G06V10/62 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及一种基于路况场景感知与动态特征融合的驾驶员视角下交通违规行为识别方法,包括:输入256×256的RGB帧、光流帧视频信息以及对应的标签文本,使用预训练CLIP模型进行特征提取;经过动态特征融合处理;将多帧视频图像的视频图像特征向量进行融合;构建路况场景图,得到路况语义特征,再结合标签语义特征进行融合,得到场景文本特征向量;计算最终的视频图像特征向量和场景文本特征向量之间的相似度,根据相似度排序,得出交通违规行为识别结果。本发明能够同时捕捉视频的静态视觉信息和动态运动信息,提高了特征表达的丰富性和准确性;利用动态特征融合策略,增强了特征向量的代表性和鲁棒性;实现了对驾驶员视角下交通违规行为的精确识别。
-
公开(公告)号:CN117152002A
公开(公告)日:2023-12-01
申请号:CN202311035537.7
申请日:2023-08-17
Applicant: 安徽大学
IPC: G06T5/00 , G06N3/09 , G06V10/44 , G06V10/82 , G06N3/0464
Abstract: 本发明公开一种基于特征差分增强的单幅图像反射去除方法,将被反射污染的图像输入VGG9网络提取超列特征;将超列特征与被反射污染的图像按通道连接形成网络的输入特征;将输入特征送入共享参数的共享编码器,进行四次下采样生成四种不同尺度和分辨率的特征图,每一次下采样均通过1/4实例归一化策略进行特征归一化;通过单编码器和双解码器得到透射增强特征和反射图R的反射增强特征;将透射增强特征、反射增强特征输入自适应信息交换模块进行自适应信息交换,随后依次进行上采样和卷积得到最终所得预测透射图和反射图。利用反射污染图像的透射层和反射层之间的特征差异和信息交换,充分考虑透射层和反射层之间的互补机制。
-
公开(公告)号:CN114332510A
公开(公告)日:2022-04-12
申请号:CN202210001464.9
申请日:2022-01-04
Applicant: 安徽大学
IPC: G06V10/75 , G06V10/762 , G06K9/62 , G06N20/00
Abstract: 本发明公开一种层次化的图像匹配方法,获得查询图像和参考图像特征点特征描述子,从参考图像包含的局部特征点中,为查询图像中的每个局部特征点寻找两个最相似的候选匹配特征点;并依次筛选出最佳特征匹配结果。本发明能够快速地计算出两幅图像之间的特征匹配点,然后应用于一系列的基于图像匹配的高层次计算机视觉任务中:基于图像的三维重建、同时定位与地图构建、图像检索、地图导航、数字孪生、图像拼接、混合现实、虚拟现实和增强现实等。
-
公开(公告)号:CN119379555B
公开(公告)日:2025-03-11
申请号:CN202411904895.1
申请日:2024-12-23
Applicant: 安徽大学
IPC: G06T5/70 , G06T5/50 , G06V10/80 , G06V10/764 , G06V10/774 , G06V10/82 , G06F17/14 , G06N3/0464
Abstract: 本发明公开一种基于二维符号距离场的阴影消除方法,通过2D符号距离场计算阴影图像的软权重掩码和SDF图像,通过软权重掩码提取原始阴影图像中的阴影区域和非阴影区域;快速傅里叶变换模块提取局部空间特征全局频率特征;通过信息交互模块IIM融合局部空间特征全局频率特征的注意力权重图得到融合特征;通过边界细化模块BRM输出边界细化后特征图;通过卷积操作提取非阴影区域的特征,通过全局特征调制模块GFM将全局特征向量、非阴影区域的特征和SDF特征进行调制,最终输出无阴影图像。本发明在阴影区域的亮度恢复、边界过渡和平滑性方面具有显著优势,使得去除后的图像接近真实无阴影效果。
-
公开(公告)号:CN114332510B
公开(公告)日:2024-03-22
申请号:CN202210001464.9
申请日:2022-01-04
Applicant: 安徽大学
IPC: G06V10/75 , G06V10/762 , G06N20/00
Abstract: 本发明公开一种层次化的图像匹配方法,获得查询图像和参考图像特征点特征描述子,从参考图像包含的局部特征点中,为查询图像中的每个局部特征点寻找两个最相似的候选匹配特征点;并依次筛选出最佳特征匹配结果。本发明能够快速地计算出两幅图像之间的特征匹配点,然后应用于一系列的基于图像匹配的高层次计算机视觉任务中:基于图像的三维重建、同时定位与地图构建、图像检索、地图导航、数字孪生、图像拼接、混合现实、虚拟现实和增强现实等。
-
公开(公告)号:CN117218278A
公开(公告)日:2023-12-12
申请号:CN202310315796.9
申请日:2023-03-16
Applicant: 腾讯科技(深圳)有限公司 , 安徽大学
Abstract: 本申请实施例公开了一种三维模型的重建方法、装置、设备及存储介质,属于三维重建技术领域。该方法包括:获取彩色图像序列,所述彩色图像序列中包含至少两张彩色图像,所述至少两张彩色图像为不同视角下对目标场景进行拍摄得到;基于所述彩色图像序列,确定所述目标场景对应的符号距离场,以及所述目标场景中各个空间点对应的几何特征;基于所述符号距离场以及所述几何特征,确定各个视角下所述彩色图像对应的渲染图像;基于所述彩色图像与所述渲染图像之间的颜色差异,对所述符号距离场进行细节优化,得到优化后的符号距离场;基于所述优化后的符号距离场进行三维重建,得到所述目标场景对应的三维模型;提高了三维模型重建的准确性。
-
-
-
-
-
-