-
公开(公告)号:CN103578481A
公开(公告)日:2014-02-12
申请号:CN201210256381.0
申请日:2012-07-24
Abstract: 本发明公开了一种跨语言的语音情感识别方法,属于语音信号处理领域。本方法首先建立了一个汉语语音库和德语语音库,然后对其中的语音进行特征提取,计算每个特征分别关于两个语音库的Fisher判别系数,并采用加权融合技术来获得每个特征的跨语言Fisher判别系数,并排序选出情感区分度最好的一些特征。在训练和识别中采用高斯混合模型来分别进行参数估计和似然值的计算。本发明可以有效地解决现有的语音情感识别方法只针对某种特定语言的局限性,所提出的基于加权融合的Fisher判别系数对于跨语言情感识别中的特征选择也具有很好的效果。
-
公开(公告)号:CN102779510B
公开(公告)日:2013-12-18
申请号:CN201210250571.1
申请日:2012-07-19
Applicant: 东南大学
Abstract: 本发明公开了一种基于特征空间自适应投影的语音情感识别方法,属于语音信号处理领域。本发明首先对语音进行特征提取,并且计算每个特征的模糊熵,当该特征的模糊熵小于预先设定好的阈值时,则认为该特征与一般模型的差异较大,应该进行投影压缩,即在特征矢量中删除此特征。在训练的参数迭代估计中对权重进行强化,从而训练出对于每一类情感所对应的高斯混合模型;最后采用计算高斯混合模型似然值的方式进行识别。采用本发明的方法可以有效地去除对识别效果不佳的特征,从而提高语音情感识别率。
-
公开(公告)号:CN102779510A
公开(公告)日:2012-11-14
申请号:CN201210250571.1
申请日:2012-07-19
Applicant: 东南大学
Abstract: 本发明公开了一种基于特征空间自适应投影的语音情感识别方法,属于语音信号处理领域。本发明首先对语音进行特征提取,并且计算每个特征的模糊熵,当该特征的模糊熵小于预先设定好的阈值时,则认为该特征与一般模型的差异较大,应该进行投影压缩,即在特征矢量中删除此特征。在训练的参数迭代估计中对权重进行强化,从而训练出对于每一类情感所对应的高斯混合模型;最后采用计算高斯混合模型似然值的方式进行识别。采用本发明的方法可以有效地去除对识别效果不佳的特征,从而提高语音情感识别率。
-
公开(公告)号:CN102436815A
公开(公告)日:2012-05-02
申请号:CN201110268976.3
申请日:2011-09-13
Applicant: 东南大学
Abstract: 本发明公开了一种用于英语口语网络机考的语音识别装置,属于语音识别的应用领域。该装置由输入I/O、模数转换器、数字信号处理器模块、分别通过程序总线与数据总线与数字信号处理器模块相连的程序存储器和数据存储器、输出I/O组成。其中数字信号处理器模块包括特征提取子模块、训练子模块和识别子模块,完成对输入语音的训练和识别过程。该装置结构简单,具有一定的实时性,并且具有较短的训练时间、较高的识别精度和较小的硬件存储开销,语音识别率高,识别效果好,可以很好地应用于英语口语网络机考中。
-
-
公开(公告)号:CN108175426B
公开(公告)日:2020-06-02
申请号:CN201711315604.5
申请日:2017-12-11
Applicant: 东南大学
IPC: A61B5/16
Abstract: 本发明公开了一种基于深度递归型条件受限玻尔兹曼机的测谎方法,首先在连续语音段落中,利用条件受限玻尔兹曼机对时间序列具有良好的建模特性和简易的推理过程,对训练样本进行建模,得到说话人是否说谎的高阶统计信息;接着用该高阶统计信息和训练样本的标签对递归神经网络进行有监督的参数训练。在获得条件受限玻尔兹曼机和递归神经网络的初始化参数后,将这两个基本网络单元由下至上搭建而成;并在验证数据集上,基于最小二乘回归微调递归神经网络的参数;利用建立的网络,对说话人的语音信号特征进行测试。本发明能够自动得到测谎的结果,且具有相对较高的识别率,该方法对评测者的专业知识和技能要求不高,有较高的测试效率。
-
公开(公告)号:CN104537386B
公开(公告)日:2019-04-19
申请号:CN201410677256.6
申请日:2014-11-21
Applicant: 东南大学
Abstract: 本发明公开了一种基于级联混合高斯形状模型的多姿态图像特征点配准方法。该方法针对任意一种图像特征点定位器的定位结果,本发明中的配准方法能够显著提高其定位精度。本发明中所述的配准方法主要包括以下步骤:一、在多姿态的图像数据库上进行混合高斯形状模型的建模;二、采用一种级联的混合高斯形状模型对特征点进行校准,在每一级中,遍历特征点可能组成的形状,通过计算该形状对应的似然概率的阈值来判断出错误定位的特征点;三、采用正确特征点的高斯分布条件概率进行错误特征点的纠错。
-
公开(公告)号:CN106303874B
公开(公告)日:2019-03-19
申请号:CN201610974157.3
申请日:2016-10-28
Applicant: 东南大学
IPC: H04R25/00
Abstract: 本发明公开了一种数字助听器中自适应验配方法。传统的助听器验配过程离不开听力专家,验配的结果好坏直接取决于听力专家的专业水平,此外,对于发展中国家而言,相当一部分地区的医疗条件达不到验配标准,利用本方法可以有效地实现助听器的自适应验配,即脱离验配专家的助听器验配过程。本发明以二维高斯分布的求和形式作为验配模型,以交互式进化计算作为寻优方法,结合本发明设计的人机交互接口,通过30代以内的人机交互即可确定数字助听器的验配模型。实验结果表明,本发明提出的方法可以有效地实现数字助听器的自适应验配,摆脱了听力专家对于数字助听器验配过程的限制。
-
公开(公告)号:CN105047194B
公开(公告)日:2018-08-28
申请号:CN201510450338.1
申请日:2015-07-28
Applicant: 东南大学
Abstract: 本发明公开了一种用于语音情感识别的自学习语谱图特征提取方法,首先对已知情感的标准语料库中的语音进行预处理,得到量化后的语谱图灰度图像;然后计算所得到的语谱图灰度图像的Gabor语谱图;再采用可辨别特征学习算法对提取到的LBP统计直方图进行训练,构建不同尺度、不同方向下的全局显著性模式集合;最后采用全局显著性集合对语音不同尺度、不同方向下Gabor图谱的LBP统计直方图进行特征选择,得到处理后的统计直方图,将N个统计直方图级联,得到适合情感分类的语音情感特征。本发明提出的情感特征可以较好地识别不同种类的情感,识别率显著优于现有的声学特征。
-
公开(公告)号:CN106205636A
公开(公告)日:2016-12-07
申请号:CN201610533439.X
申请日:2016-07-07
Applicant: 东南大学
IPC: G10L25/63
CPC classification number: G10L25/63
Abstract: 本发明公开了一种基于MRMR准则的语音情感识别特征融合方法,包括如下步骤:1、提取语音信号的韵律特征、音质特征和谱特征;2、对提取的韵律特征、音质特征和谱特征采用MRMR准则进行特征融合。本发明公开的语音情感识别特征融合方法融合了语音的韵律特征、音质特征和谱特征,在保证识别率的同时有效优化了特征向量维度,提高了语音情感识别系统的效率。
-
-
-
-
-
-
-
-
-