-
公开(公告)号:CN103679144B
公开(公告)日:2017-01-11
申请号:CN201310652771.4
申请日:2013-12-05
Applicant: 东南大学
IPC: G06K9/00
Abstract: 本发明公布了一种基于计算机视觉的复杂环境下果蔬识别方法,本发明包括以下步骤:首先,获取待识别果蔬图像;其次,将获取到的果蔬图像进行预处理,预处理后的图像被分割为果蔬区域和背景区域;提取预处理后的果蔬图像特征,其中提取的图像特征为颜色特征和纹理特征;然后,采用自适应加权方法对果蔬特征进行融合;最后,采用最近邻分类算法对果蔬进行识别。本发明相比已有的果蔬识别系统,算法复杂度低,识别率高,具有很强的使用性,可以有效的应用于日常生活中。
-
-
公开(公告)号:CN105307093B
公开(公告)日:2018-08-21
申请号:CN201510835800.X
申请日:2015-11-26
Applicant: 东南大学
IPC: H04R25/00
Abstract: 本发明公开了一种自适应的听力补偿方法,本发明包括以下步骤:首先利用gammatone滤波器组对输入信号进行多通道分解,然后根据通道内信号的动态范围以及听损患者的听觉范围确定补偿方法,若通道信号经线性增益处理后仍在患者的听觉范围内则使用线性放大进行听力补偿以减小畸变,否则使用动态范围压缩进行补偿以增加可听度。另外,为减小动态范围压缩带来的信号畸变,提高噪声环境下输出信号的信噪比,采用自适应压缩方法进行听力补偿,使压缩比尽量接近于1。本发明相比已有的听力补偿方法,本发明补偿后的语音可懂度更高,具有很强的实用性。
-
公开(公告)号:CN113450830A
公开(公告)日:2021-09-28
申请号:CN202110695847.6
申请日:2021-06-23
Applicant: 东南大学
Abstract: 本发明公布了一种具有多重注意机制的卷积循环神经网络的语音情感识别方法,包括:步骤1,提取谱图特征和帧级特征。步骤2,谱图特征输送进CNN模块来学习特征中的时频相关信息。步骤3,多头自注意力层作用于CNN模块来计算不同规模的全局特征下不同帧的权重,并融合CNN中不同深度的特征。步骤4,一个多维注意层作用于LSTM输入的帧级特征来综合考虑局部特征与全局特征的关系。步骤5,处理过的帧级特征输送进LSTM模型中来获取特征中的时间信息。步骤6,一个融合层来总结不同模块的输出来增强模型性能。步骤7,利用Softmax分类器对不同情感进行分类。本发明结合深度学习网络,模块内部采用并行的连接结构来同时处理特征,能够有效的提升语音情感识别的性能。
-
公开(公告)号:CN105047194A
公开(公告)日:2015-11-11
申请号:CN201510450338.1
申请日:2015-07-28
Applicant: 东南大学
Abstract: 本发明公开了一种用于语音情感识别的自学习语谱图特征提取方法,首先对已知情感的标准语料库中的语音进行预处理,得到量化后的语谱图灰度图像;然后计算所得到的语谱图灰度图像的Gabor语谱图;再采用可辨别特征学习算法对提取到的LBP统计直方图进行训练,构建不同尺度、不同方向下的全局显著性模式集合;最后采用全局显著性集合对语音不同尺度、不同方向下Gabor图谱的LBP统计直方图进行特征选择,得到处理后的统计直方图,将N个统计直方图级联,得到适合情感分类的语音情感特征。本发明提出的情感特征可以较好地识别不同种类的情感,识别率显著优于现有的声学特征。
-
公开(公告)号:CN104537386A
公开(公告)日:2015-04-22
申请号:CN201410677256.6
申请日:2014-11-21
Applicant: 东南大学
CPC classification number: G06T2207/20036
Abstract: 本发明公开了一种基于级联混合高斯形状模型的多姿态图像特征点配准方法。该方法针对任意一种图像特征点定位器的定位结果,本发明中的配准方法能够显著提高其定位精度。本发明中所述的配准方法主要包括以下步骤:一、在多姿态的图像数据库上进行混合高斯形状模型的建模;二、采用一种级联的混合高斯形状模型对特征点进行校准,在每一级中,遍历特征点可能组成的形状,通过计算该形状对应的似然概率的阈值来判断出错误定位的特征点;三、采用正确特征点的高斯分布条件概率进行错误特征点的纠错。
-
公开(公告)号:CN105609116B
公开(公告)日:2019-03-05
申请号:CN201510976875.X
申请日:2015-12-23
Applicant: 东南大学
Abstract: 本发明公开了一种语音情感维度区域的自动识别方法,属于语音识别技术领域。我们采用了一种特征空间重构的方法进行分类器的优化。第一,我们提取和优化基本声学特征作为区分情感区域的基准;第二,我们采用特征空间重构的方法将多个情感特征空间分解和配对,分别采用LDA和PCA模块级联的方法,提高目标类之间的离散程度;第三,我们提出两种情感区域的分割方法,即四个区域和十六个区域的分割方法,进行复合情感的分解,取代传统的基本情感类型,通过相关计算来融合分类器输出,进行情感区域的识别,获得了更高的识别效果。
-
公开(公告)号:CN105609116A
公开(公告)日:2016-05-25
申请号:CN201510976875.X
申请日:2015-12-23
Applicant: 东南大学
Abstract: 本发明公开了一种语音情感维度区域的自动识别方法,属于语音识别技术领域。我们采用了一种特征空间重构的方法进行分类器的优化。第一,我们提取和优化基本声学特征作为区分情感区域的基准;第二,我们采用特征空间重构的方法将多个情感特征空间分解和配对,分别采用LDA和PCA模块级联的方法,提高目标类之间的离散程度;第三,我们提出两种情感区域的分割方法,即四个区域和十六个区域的分割方法,进行复合情感的分解,取代传统的基本情感类型,通过相关计算来融合分类器输出,进行情感区域的识别,获得了更高的识别效果。
-
公开(公告)号:CN103679144A
公开(公告)日:2014-03-26
申请号:CN201310652771.4
申请日:2013-12-05
Applicant: 东南大学
IPC: G06K9/00
Abstract: 本发明公布了一种基于计算机视觉的复杂环境下果蔬识别方法,本发明包括以下步骤:首先,获取待识别果蔬图像;其次,将获取到的果蔬图像进行预处理,预处理后的图像被分割为果蔬区域和背景区域;提取预处理后的果蔬图像特征,其中提取的图像特征为颜色特征和纹理特征;然后,采用自适应加权方法对果蔬特征进行融合;最后,采用最近邻分类算法对果蔬进行识别。本发明相比已有的果蔬识别系统,算法复杂度低,识别率高,具有很强的使用性,可以有效的应用于日常生活中。
-
公开(公告)号:CN104537386B
公开(公告)日:2019-04-19
申请号:CN201410677256.6
申请日:2014-11-21
Applicant: 东南大学
Abstract: 本发明公开了一种基于级联混合高斯形状模型的多姿态图像特征点配准方法。该方法针对任意一种图像特征点定位器的定位结果,本发明中的配准方法能够显著提高其定位精度。本发明中所述的配准方法主要包括以下步骤:一、在多姿态的图像数据库上进行混合高斯形状模型的建模;二、采用一种级联的混合高斯形状模型对特征点进行校准,在每一级中,遍历特征点可能组成的形状,通过计算该形状对应的似然概率的阈值来判断出错误定位的特征点;三、采用正确特征点的高斯分布条件概率进行错误特征点的纠错。
-
-
-
-
-
-
-
-
-