-
公开(公告)号:CN114818984A
公开(公告)日:2022-07-29
申请号:CN202210605679.1
申请日:2022-05-31
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于人工智能的精细化城市积水水位拟合方法,包括:1、构建无量纲化的水文特征数据库;2、基于图神经网络方法展开聚类分析;3、划分城市积水水位子区域;4、基于神经网络逐区构建个性化城市水文概念模型;5、根据积水监测站积水水位监测信息,结合经度信息、纬度信息、时间信息、地面高程信息,反衍各子区域任意位置积水水位。本发明模型适用性较强,模型融合了积水站点的地理信息和时间信息,有效提取积水水位的时空分布特征,模型的拟合能力较强;能提供全区域任意位置的积水水位产品,实现了去网格化,且能基于历史同期数据库实现历史水位的回报,对预防城市积涝和城市合理规划具有重要作用。
-
公开(公告)号:CN119128448A
公开(公告)日:2024-12-13
申请号:CN202411607038.5
申请日:2024-11-12
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G06F18/20 , G06F18/214 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了基于多源模态融合深度学习的高分辨雨情分析生成方法,方法包括:基于与雨情相关的多源数据集,得到多物理量数据集,并建立无量纲化的多模态特征因子库;对损失函数进行多维度非等权处理,构建多尺度空间转换模型MF‑ST‑Unet;模型训练后最终生成逐小时区域高分辨率雨情分析数据集;基于训练好的MF‑ST‑Unet模型,通过迁移学习知识蒸馏,得到应用于覆盖整体区域的高分辨率雨情分析数据集。本发明能够快速有效生成高空间分辨率的均匀网格雨情分析,且较传统方法更加客观、准确;充分考虑雨情的多尺度特征及降水量级的差异,实现高分辨率客观雨情数据获取,提高雨情检测能力和灾害防范精准性,具有极强的应用价值。
-
公开(公告)号:CN114417623B
公开(公告)日:2024-12-06
申请号:CN202210079142.6
申请日:2022-01-24
Applicant: 中国气象局地球系统数值预报中心 , 南京信息工程大学 , 北京城市气象研究院
Inventor: 陈静 , 李晓莉 , 马旭林 , 张涵斌 , 高丽 , 王远哲 , 李红祺 , 邓国 , 王婧卓 , 陈法敬 , 李应林 , 张进 , 沈学顺 , 龚建东 , 智协飞 , 夏宇 , 彭飞 , 霍振华 , 田华
IPC: G01W1/10 , G06F30/20 , G06Q10/0631 , G06F111/08
Abstract: 本发明属于数值预报技术领域,公开了一种GRAPES‑REPS区域集合预报方法及系统,GRAPES‑REPS区域集合预报方法包括:0.1度水平分辨率GRAEPS‑REPS集合预报试验参数及模式确定;GRAPES‑REPS侧边界扰动构建;中国GRAPES‑REPS区域集合预报业务化系统构建。本发明改进ETKF初值扰动方案并优化测边界扰动不确定性方案,提升预报系统离散度及区域集合预报系统性能,从而满足中国区域集合预报系统业务化应用需求,有针对性地制作和提供天气预报服务。本发明为中国各级气象台提供不同层次、不同预报时效的1h间隔集合预报产品,为天气预报提供指导和参考,便于模式开发者提高集合预报系统性能。
-
公开(公告)号:CN118227979B
公开(公告)日:2024-09-06
申请号:CN202410652939.X
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/15 , G06F18/214 , G06N3/0464 , G06F30/27 , G06F119/02
Abstract: 本发明公开一种基于改进卷积神经网络利用热带太平洋次表层海温异常的预测ENSO方法,包括以下步骤:(1)采集热带太平洋次表层海温数据、Nino3.4观测数据,并对数据进行预处理,构建训练数据集;(2)搭建加入了注意力机制SENet的CNN模型;(3)基于所述训练集和模型进行训练;(4)生成预测产品利用皮尔森积矩相关系数计算得到ENSO预测;本发明所用数据资源和计算资源少,计算速度更快,预测时效长;突出次表层海温的经向扰动,更能体现热带太平洋次表层海温异常东传的特征。
-
公开(公告)号:CN118051878B
公开(公告)日:2024-06-11
申请号:CN202410452556.8
申请日:2024-04-16
Applicant: 南京气象科技创新研究院 , 南京信息工程大学
Abstract: 本发明公开了基于多模态融合改进深度学习的极端降水次季节预报方法,包括:对多种气象要素预报数据及预报目标区域的降水观测数据进行预处理;对影响极端降水发生的多模态特征进行自适应标识编码,并生成对应特征向量,形成无量纲化的多模态预报因子库;构建深度残差卷积神经网络优化模型,并分别利用训练集和验证集对模型进行训练和验证优化;采用训练好的模型进行目标区域的极端降水次季节预报。本发明采用了多气象要素因子、多模态融合与改进损失函数的深度学习神经网络模型,对极端降水预报进行了针对性优化,有效把握极端降水的时空分布特征,提高了极端降水的次季节预报能力,具有极强的应用价值。
-
公开(公告)号:CN117233870B
公开(公告)日:2024-01-23
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN117237677A
公开(公告)日:2023-12-15
申请号:CN202311518546.1
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
Abstract: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN117233870A
公开(公告)日:2023-12-15
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN115857062B
公开(公告)日:2023-06-13
申请号:CN202310174997.1
申请日:2023-02-28
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G01W1/10 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了一种基于多通道卷积神经网络的次季节台风生成预报方法,包括以下步骤:(1)统计台风逐周生成频次,对台风频次进行数据重组,提取不同时间尺度的周期性信号,并过滤多余的噪声;(2)基于信息流方法诊断各时间尺度周期性信号的可预测性来源构建掩膜场;(3)搭建多通道卷积神经网络模型,基于再分析资料构建的训练集对模型展开训练;(4)基于采集到的数值模型预报数据展开迁移学习,得到最终的预报模型;(5)将预设时间内的预报数据代入模型,生成次季节台风生成预报;本发明提升次季节台风生成预报技巧;有效滤除大尺度因子场中的多余噪音,进而有效提高模型预报效果。
-
公开(公告)号:CN114417623A
公开(公告)日:2022-04-29
申请号:CN202210079142.6
申请日:2022-01-24
Applicant: 中国气象局地球系统数值预报中心 , 南京信息工程大学 , 北京城市气象研究院
Inventor: 陈静 , 李晓莉 , 马旭林 , 张涵斌 , 高丽 , 王远哲 , 李红祺 , 邓国 , 王婧卓 , 陈法敬 , 李应林 , 张进 , 沈学顺 , 龚建东 , 智协飞 , 夏宇 , 彭飞 , 霍振华 , 田华
IPC: G06F30/20 , G06Q10/04 , G06Q10/06 , G06F111/08
Abstract: 本发明属于数值预报技术领域,公开了一种GRAPES‑REPS区域集合预报方法及系统,GRAPES‑REPS区域集合预报方法包括:0.1度水平分辨率GRAEPS‑REPS集合预报试验参数及模式确定;GRAPES‑REPS侧边界扰动构建;中国GRAPES‑REPS区域集合预报业务化系统构建。本发明改进ETKF初值扰动方案并优化测边界扰动不确定性方案,提升预报系统离散度及区域集合预报系统性能,从而满足中国区域集合预报系统业务化应用需求,有针对性地制作和提供天气预报服务。本发明为中国各级气象台提供不同层次、不同预报时效的1h间隔集合预报产品,为天气预报提供指导和参考,便于模式开发者提高集合预报系统性能。
-
-
-
-
-
-
-
-
-