-
公开(公告)号:CN112926825A
公开(公告)日:2021-06-08
申请号:CN202110079047.1
申请日:2021-01-21
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于多目标量子磷虾群机制的多无人机任务分配方法,针对当无人机任务分配过程中有多个目标需要同时被求解时,本发明设计了多目标量子磷虾群机制来解决多无人机作战任务的多目标联合求解问题,通过使用非支配解排序和拥挤度计算的方法对量子磷虾的位置进行评价,使整个量子磷虾群向有较高的非支配等级和较大拥挤度的量子磷虾位置演化,能够获得更好的性能,而且得到的Pareto最优解能够支配使用单目标优化算法求得的单目标解,实现了能够为同时考虑多个目标的任务分配提供不同的分配方案,决策者可以根据实际工程问题中目标的重要程度来选择合适的任务分配方案,拓宽了已有任务分配方法的应用范围,有更广阔的应用前景。
-
公开(公告)号:CN113095464B
公开(公告)日:2022-08-02
申请号:CN202110357190.2
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种强冲击噪声下基于量子黏霉菌搜索机理的盲源分离方法,基于分离信号的最大化峰度这一独立性判据设计目标函数,该方法先利用Givens旋转变换降低计算量,再在给出的搜索范围内对目标函数寻优,利用所设计的量子黏霉菌搜索机理在该范围之内搜索目标函数的最优解及其对应的分离矩阵,从而实现盲源分离。所设计的方法可以实现在强冲击噪声环境下且低信噪比情况下混叠信号的盲源分离,具有收敛速度快、分离精度高、性能稳定等优势,拥有着广泛的应用前景。
-
公开(公告)号:CN112947506B
公开(公告)日:2022-08-02
申请号:CN202110468435.9
申请日:2021-04-28
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 本发明提供一种基于量子鲨鱼机制的AUV全局路径规划方法,采用多Lamb涡流叠加技术和障碍物栅格等效技术来实现环境建模。本发明所提供的AUV全局路径规划模型包括决策变量设计、航行代价设计、约束条件设计和代价函数设计四部分,充分考虑了AUV航行路径的安全性、高效性和可靠性,将具有更好的实用性。本发明设计的量子鲨鱼优化机制,可以快速得到AUV全局路径规划路线,其仿生于鲨鱼捕食过程并结合模拟量子旋转门来演化鲨鱼量子态,收敛速度快、收敛精度高,且具有更好的鲁棒性。仿真实验证明了基于量子鲨鱼机制的AUV全局路径规划方法的有效性,且相对于传统的路径规划方法搜索速度更快、精度更高。
-
公开(公告)号:CN113608546A
公开(公告)日:2021-11-05
申请号:CN202110783634.9
申请日:2021-07-12
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明提供一种量子海狮机制的无人机群任务分配方法,针对无人机群实际环境中任务分配效能较低的难题,设计了量子海狮机制求取最优任务分配矩阵,以无人机执行任务所获得的价值以及其对应付出的代价设计出效能函数,并利用无人机航程限制、任务限制、弹药限制等约束条件设计出惩罚函数,最终将效能函数与惩罚函数结合得到适应度函数。本发明考虑了设计无人机路径问题,并引入了多种无人机并分别执行多种任务,如侦察机执行侦察和战场评估任务,轰炸机执行攻击目标任务,战斗机执行侦察、攻击目标和战场评估任务。同时,利用量子海狮机制计算最优解,提高无人机群的任务分配效能。
-
公开(公告)号:CN113095464A
公开(公告)日:2021-07-09
申请号:CN202110357190.2
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种强冲击噪声下基于量子黏霉菌搜索机理的盲源分离方法,基于分离信号的最大化峰度这一独立性判据设计目标函数,该方法先利用Givens旋转变换降低计算量,再在给出的搜索范围内对目标函数寻优,利用所设计的量子黏霉菌搜索机理在该范围之内搜索目标函数的最优解及其对应的分离矩阵,从而实现盲源分离。所设计的方法可以实现在强冲击噪声环境下且低信噪比情况下混叠信号的盲源分离,具有收敛速度快、分离精度高、性能稳定等优势,拥有着广泛的应用前景。
-
公开(公告)号:CN113093146A
公开(公告)日:2021-07-09
申请号:CN202110357188.5
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于量子跳跃逃逸机制的MIMO雷达正交波形设计方法,包括:建立正交多相编码信号的设计模型;初始化量子种群并设定参数;量子种群内进行杂交操作;定义并计算量子个体位置和杂交位置的适应度;确定量子种群的个体历史最优位置和全局最优位置;更新量子种群的量子位置;量子种群执行逃逸操作;确定量子种群所有量子个体的位置和杂交位置;更新量子种群的个体历史最优位置和全局最优位置;演进终止判断,输出所设计的最优正交波形。本发明通过约束互相关指标和优化自相关指标来设计正交波形;设计了量子跳跃逃逸优化机制来求解正交信号。
-
公开(公告)号:CN112184594A
公开(公告)日:2021-01-05
申请号:CN202011096372.0
申请日:2020-10-14
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种量子牧群机制自动演化PCNN的图像去噪方法,包括:根据椒盐噪声或高斯噪声的影响,得到含噪图像;对噪声污染后图像的进行强噪声滤波;计算自适应滤波窗口尺寸;建立自动演化PCNN图像滤波模型;初始化量子自私牧群的量子位置并设定参数;计算每个个体的适应值和生存价值;使用量子旋转门更新牧群领导者、牧群优势追随者、劣势追随者、牧群叛逃者以及捕食者的量子位置;判断是否达到量子牧群的最大迭代次数,是则终止迭代,返回最优参数;否则继续执行步骤六;输出牧群和捕食者的全局最优位置,并比较二者的生存价值,得出s个最优参数代入PCNN中,激活PCNN得到滤波图像并输出。本发明极大的提高了系统求解关键最优参数的效率和质量。
-
公开(公告)号:CN114995492B
公开(公告)日:2024-11-08
申请号:CN202210594253.0
申请日:2022-05-27
Applicant: 哈尔滨工程大学
IPC: G05D1/695 , G06N3/006 , G06N10/60 , G06Q10/047 , G06Q50/26 , G05D109/20
Abstract: 本发明公开了一种多无人机抢灾救援规划方法,步骤一、建立多无人机救援规划模型;步骤二、初始化量子北方苍鹰量子位置并设定参数;步骤三、计算量子北方苍鹰目标函数值;步骤四、根据所有量子北方苍鹰位置的目标函数值进行非支配解排序;步骤五、计算每一非支配等级中量子北方苍鹰位置拥挤度;步骤六、在猎物识别攻击阶段更新量子北方苍鹰量子位置;步骤七、在追逃阶段更新量子北方苍鹰量子位置;步骤八、判断是否达到量子北方苍鹰最大迭代次数,是则终止迭代,将非支配等级为1的量子北方苍鹰位置对应为任务分配矩阵,作为抢灾救援规划任务分配结果输出;否则令k=k+1,执行步骤四。本发明克服了容易陷入局部收敛的弊端,提升了演化机制的寻优速率。
-
公开(公告)号:CN113095465B
公开(公告)日:2023-10-17
申请号:CN202110358000.9
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法,包括:建立水下无人集群任务分配模型;初始化量子熊群和人群位置;根据适应度函数计算量子熊群和人群的大马哈鱼密度;对量子熊群及人群的量子旋转角和位置进行更新;形成混合策略;判断是否到达最大迭代次数,如达到则终止迭代;如未达到,则令t=t+1,并返回步骤三继续执行;输出所得最终混合策略G、G'、#imgabs0#它们最大值所对应的策略即为收益期望最大的策略。本发明使用量子大马哈鱼洄游机制演化博弈论对水下无人集群进行任务部署分配,通过计算各部署所得到的损失比,调整部署分配方式,并通过混合策略优劣性判别所获得的混合策略的好坏,从而输出收益期望最高的部署分配方式。
-
公开(公告)号:CN112184594B
公开(公告)日:2023-08-15
申请号:CN202011096372.0
申请日:2020-10-14
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种量子牧群机制自动演化PCNN的图像去噪方法,包括:根据椒盐噪声或高斯噪声的影响,得到含噪图像;对噪声污染后图像的进行强噪声滤波;计算自适应滤波窗口尺寸;建立自动演化PCNN图像滤波模型;初始化量子自私牧群的量子位置并设定参数;计算每个个体的适应值和生存价值;使用量子旋转门更新牧群领导者、牧群优势追随者、劣势追随者、牧群叛逃者以及捕食者的量子位置;判断是否达到量子牧群的最大迭代次数,是则终止迭代,返回最优参数;否则继续执行步骤六;输出牧群和捕食者的全局最优位置,并比较二者的生存价值,得出s个最优参数代入PCNN中,激活PCNN得到滤波图像并输出。本发明极大的提高了系统求解关键最优参数的效率和质量。
-
-
-
-
-
-
-
-
-