-
公开(公告)号:CN104020214B
公开(公告)日:2016-05-04
申请号:CN201410273179.8
申请日:2014-06-18
Applicant: 哈尔滨工程大学
IPC: G01N27/48
Abstract: 本发明提供的是一种电极反应参数的测定方法。将三电极体系反应装置的三电极接入电化学工作站,使用循环伏安法测量出初始数据,对初始数据进行处理,得到电化学反应参数和数据关系图形;对初始数据进行处理包括:首先批量读入文件,然后采用四层数据结构存储读入的数据,并从文件名称中读取温度和扫描速率的信息,全部读入并存储完毕后,进行数据校正和预处理,进而根据校正后的结果进行绘图,判断反应类型,并结合计算公式得到扩散系数、反应活化能、速率常数数据,最后显示出计算结果与图片。本发明能够方便的测得电极反应动力学和热力学参数,大大缩短测定周期,减少整体的工作量,整体造价低廉,最终计算结果与绘出的图形能够满足大多数需要。
-
公开(公告)号:CN102912382B
公开(公告)日:2015-09-30
申请号:CN201210414887.X
申请日:2012-10-26
Applicant: 哈尔滨工程大学
IPC: C25C3/36
Abstract: 本发明提供的是一种在氟氯化物熔盐体系中电解制备铝-镁合金的方法。在电解槽中,以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,按照质量配比为NaCl:KCl:AlF3=39%:50%:11%的比例配制电解质,加热至680-730℃,待电解质熔融后,加入MgCl2,MgCl2的加入量为AlF3质量的40-75%,通入直流电电解,电解温度为680-730℃,阴极电流密度为5.2~8.7A/cm2,阳极电流密度为0.6~1.1A/cm2,槽电压4.7~6.1V,经过1.5~4小时的电解,在电解槽于阴极附近沉积出液态Al-Mg合金,冷却后得固态Al-Mg合金。本发明可大大缩短成产工艺的流程。工艺简单、节省能源、产品纯度高。
-
公开(公告)号:CN103132108B
公开(公告)日:2015-05-27
申请号:CN201310081821.8
申请日:2013-03-14
Applicant: 哈尔滨工程大学
IPC: C25C3/36
Abstract: 本发明提供的是一种熔盐体系中电解制备耐热镁铝钕合金的方法。在电解槽中,以惰性金属钼为阴极并置于电解槽底部,石墨为阳极,加入经干燥脱水的MgCl2、AlF3、NaCl和LiCl,各组分的质量百分比分别为8.9-13.4%、4.4-8.9%、27.4-28.6%、51.3-53.6%,再按AlF3质量的5-10%加入氧化钕,混合均匀,将温度控制在800-850℃,待电解质熔融后通入直流电电解,控制阴极电流密度为3.13-6.25A/cm2,阳极电流密度为0.53-1.06A/cm2,槽电压为4.0-5.6V,电解3小时,在电解槽阴极附近析出液态Mg-Al-Nd合金,冷却得到固态Mg-Al-Nd三元合金。本发明采用熔盐体系挥发性小,电流效率高。
-
公开(公告)号:CN103409649B
公开(公告)日:2015-02-25
申请号:CN201310219756.0
申请日:2013-06-05
Applicant: 哈尔滨工程大学
IPC: C22B59/00
Abstract: 本发明提供的是一种熔盐与液态金属还原萃取分离稀土的方法及其装置。液态铝为阴极,阳极为石墨棒,将KCl-LiCl加入到电解槽中加热熔化后作为电解质,经过电解,阴极电解所得锂溶解在液态铝中得液态铝锂合金;电解槽中加入氯化镨与氯化钐作为熔盐相,以液态铝锂合金为萃取剂在氩气气氛保护下匀速搅拌萃取反应;分离熔盐相和液态金属相,钐被萃取到在液态金属相中而形成铝锂钐合金,镨留在熔盐相中,使钐和镨分离。本发明适用于高温强辐射等极端条件;还原剂可以循环使用,节约资源;钐在合金和熔盐中的分配系数为68.1-142.4,镨在合金和熔盐中的分配系数为2.9-23.2,钐镨分离系数为5.0-23.3。
-
公开(公告)号:CN104020214A
公开(公告)日:2014-09-03
申请号:CN201410273179.8
申请日:2014-06-18
Applicant: 哈尔滨工程大学
IPC: G01N27/48
Abstract: 本发明提供的是一种电极反应参数的测定方法。将三电极体系反应装置的三电极接入电化学工作站,使用循环伏安法测量出初始数据,对初始数据进行处理,得到电化学反应参数和数据关系图形;对初始数据进行处理包括:首先批量读入文件,然后采用四层数据结构存储读入的数据,并从文件名称中读取温度和扫描速率的信息,全部读入并存储完毕后,进行数据校正和预处理,进而根据校正后的结果进行绘图,判断反应类型,并结合计算公式得到扩散系数、反应活化能、速率常数数据,最后显示出计算结果与图片。本发明能够方便的测得电极反应动力学和热力学参数,大大缩短测定周期,减少整体的工作量,整体造价低廉,最终计算结果与绘出的图形能够满足大多数需要。
-
公开(公告)号:CN102644094B
公开(公告)日:2014-08-06
申请号:CN201210122563.9
申请日:2012-04-24
Applicant: 哈尔滨工程大学
IPC: C25C3/36
Abstract: 本发明提供的是一种熔盐电解制备Al-Mg-Tb三元合金的方法。向电解槽中加入经脱水干燥的AlF3、MgCl2、NaCl和KCl,使各成分的质量百分比分别为10-13%、5-7%、35-38%、46-48%,再按AlF3质量的5-10%加入氧化铽,控制温度在700-800℃,待电解槽中内物料熔融后,以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,通入直流电电解,控制阴极电流密度在5.19-10.38A/cm2,阳极电流密度为0.64-1.27A/cm2,槽电压在4.4-5.8V,经过2-4小时的电解,在电解槽的阴极附近沉积出金属铝的含量为57.5-73.1%、金属镁的含量为4.9-19.9%、金属铽的含量为14.1-28.5%的Al-Mg-Tb三元合金。电流效率为45.1-71.2%。本发明采用氟氯化物作为电解体系,避免了采用单一熔盐体系电解的弊端,在较低的温度下,直接电解出成分均一的铝镁稀土合金。
-
公开(公告)号:CN102628131B
公开(公告)日:2013-11-20
申请号:CN201210122795.4
申请日:2012-04-24
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种铝镥镱合金及其熔盐电解制备方法。在电解炉内,以AlF3+NaCl+KCl+KF为电解质体系,各电解质的质量配比为AlF3∶NaCl∶KCl∶KF=6.7~12.6%∶36.5~38.9%∶46.9~50.1%∶3.8~4.1%,将Lu2O3和Yb2O3粉末添加到电解质体系中,Lu2O3和Yb2O3的加入量均为AlF3重量的5.3~10.2%,加热至750~850℃熔融,以金属钼为阴极,石墨为阳极,电解温度750~850℃,阴极电流密度为2.8~7.8A/cm2,阳极电流密度为0.5A/cm2,槽电压4.1~5.3V,经2~4小时的电解,在熔盐电解槽阴极附近沉积出得到铝、镥、镱的含量分别为:71.1~96.6%、2.3~18.8%、0.9~10.4%的铝镥镱合金。本发明可以延长设备的使用寿命,节省能源,降低生产成本。
-
公开(公告)号:CN103132108A
公开(公告)日:2013-06-05
申请号:CN201310081821.8
申请日:2013-03-14
Applicant: 哈尔滨工程大学
IPC: C25C3/36
Abstract: 本发明提供的是一种熔盐体系中电解制备耐热镁铝钕合金的方法。在电解槽中,以惰性金属钼为阴极并置于电解槽底部,石墨为阳极,加入经干燥脱水的MgCl2、AlF3、NaCl和LiCl,各组分的质量百分比分别为8.9-13.4%、4.4-8.9%、27.4-28.6%、51.3-53.6%,再按AlF3质量的5-10%加入氧化钕,混合均匀,将温度控制在800-850℃,待电解质熔融后通入直流电电解,控制阴极电流密度为3.13-6.25A/cm2,阳极电流密度为0.53-1.06A/cm2,槽电压为4.0-5.6V,电解3小时,在电解槽阴极附近析出液态Mg-Al-Nd合金,冷却得到固态Mg-Al-Nd三元合金。本发明采用熔盐体系挥发性小,电流效率高。
-
公开(公告)号:CN102912382A
公开(公告)日:2013-02-06
申请号:CN201210414887.X
申请日:2012-10-26
Applicant: 哈尔滨工程大学
IPC: C25C3/36
Abstract: 本发明提供的是一种在氟氯化物熔盐体系中电解制备铝-镁合金的方法。在电解槽中,以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,按照质量配比为NaCl:KCl:AlF3=39%:50%:11%的比例配制电解质,加热至680-730℃,待电解质熔融后,加入MgCl2,MgCl2的加入量为AlF3质量的40-75%,通入直流电电解,电解温度为680-730℃,阴极电流密度为5.2~8.7A/cm2,阳极电流密度为0.6~1.1A/cm2,槽电压4.7~6.1V,经过1.5~4小时的电解,在电解槽于阴极附近沉积出液态Al-Mg合金,冷却后得固态Al-Mg合金。本发明可大大缩短成产工艺的流程。工艺简单、节省能源、产品纯度高。
-
公开(公告)号:CN102644014A
公开(公告)日:2012-08-22
申请号:CN201210122539.5
申请日:2012-04-24
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种高镨含量的镁镨合金及其熔盐电解制备方法。在电解炉内,以LiCl-KCl-MgCl2-PrCl3为电解质体系,各电解质的质量配比为44~45%、44~45%、8~9%、1~4%,然后加热至630℃熔融,以金属钨或钼为工作电极,石墨为辅助电极,银/氯化银(1wt.%)为参比电极,电解温度630℃下,电位值控制在-1.85V附近,经180分钟的电解,在熔盐电解槽于工作电极附近沉积出含有质量分数为9.7~23.2%的镨和余量的镁的镁镨合金。本发明不用任何金属作为原料,而是全部采用金属氯化物为原料,通过控制电解质配比可以得到不同组成的高镨含量的镁镨合金,合金中镨的质量分数为9.7~23.2%。整套工艺简单,对设备和实验条件要求低,能耗和污染小。
-
-
-
-
-
-
-
-
-