-
公开(公告)号:CN1287678A
公开(公告)日:2001-03-14
申请号:CN99801925.9
申请日:1999-08-26
Applicant: 松下电工株式会社
CPC classification number: B82Y10/00 , H01J1/312 , H01J9/022 , H01J31/127 , H01J2201/3125
Abstract: 本发明提供能够使表面电极的所希望的区域发射出电子的场发射型电子源及其制造方法,场发射型电子源10具备作为导电性基板的p型硅基板1、形成于p型硅基板1内的主表面侧的带状的作为扩散层的n型区域8、形成于n型区域8上,从n型区域注入的电子发生漂移的、氧化的多孔多晶硅构成的强电场漂移层6、形成于强电场漂移层6之间的多晶硅层3,以及在与n型区域8交叉的方向上形成带状,跨越强电场漂移层6上面及多晶硅层3上面形成的导电性薄膜构成的表面电极7。适当选择施加电压的n型区域8和表面电极7,能够使得施加电压的表面电极7中只有与施加电压的n型区域8交叉的区域发射出电子,所以能够使表面电极7的所希望的区域发射出电子。
-
公开(公告)号:CN1271958A
公开(公告)日:2000-11-01
申请号:CN00107058.4
申请日:2000-04-24
Applicant: 松下电工株式会社
Abstract: 本发明揭示一种场致发射型电子源及其制造方法。场致发射型电子源10具有导电性基板1、在导电性基板1的一个表面上形成的至少一部分进行多孔化处理的半导体层6、以及在半导体层上形成的导电性薄膜7。通过加上导电性薄膜7相对于导电性基板1为正的电压,注入导电性基板1的电子通过半导体层从导电性薄膜7发射。半导体层包含柱状结构部分21和平均尺寸在2μm以下的多孔结构部分25混合存在的多孔半导体层6。
-
公开(公告)号:CN1825519B
公开(公告)日:2012-01-11
申请号:CN200610004886.2
申请日:2001-10-26
Applicant: 松下电工株式会社
IPC: H01J1/30
Abstract: 一种电场放射型电子源(10),在由玻璃衬底构成的绝缘性衬底(11)的上侧设置有:由导电性层构成的下部电极(8);含有由氧化或氮化的多孔性半导体构成的漂移部(6a)的强电场漂移层(6);由金薄膜构成的表面电极(7)。而且,外加电压使表面电极(7)相对于下部电极(8)成为正极,并使从下部电极(8)注入强电场漂移层(6)的电子在强电场漂移层(6)中漂移,通过表面电极(7)放射到外部。在下部电极(8)和强电场漂移层(6)之间设置有由n层(21)和p层(22)构成的pn结半导体层,据此,就能防止漏泄电流从下部电极(8)流向表面电极(7),从而降低耗电量。
-
公开(公告)号:CN102089853A
公开(公告)日:2011-06-08
申请号:CN200980126594.8
申请日:2009-07-08
Applicant: 松下电工株式会社
IPC: H01J63/06
CPC classification number: H01J61/305 , H01J61/16 , H01J63/04 , H01J63/08
Abstract: 本发明的发光装置由气密容器(1)、气体、电子源(2)、阳极电极(3)、控制装置(5)及荧光体(4)构成。气密容器具有气密性。气体被密封在气密容器(1),并该气体受到电子(500)的激发而发射第一光(501)。电子源(2)配置在气密容器(1)内部,因施加驱动电压而发射电子(500)。阳极电极(3)配置在气密容器(1)内部。控制装置(5)向电子源(2)施加驱动电压。荧光体(4)设置在气密容器(1)的内部,并受到所述第一光(501)的激发而发射第二光。电子源(2)因施加放电电压而发射出电子(500),该电子(500)的能量分布具有峰值。能量分布的所述峰值比所述气体的激发能大,比所述气体的离子能小。
-
公开(公告)号:CN1825521B
公开(公告)日:2010-06-16
申请号:CN200610004888.1
申请日:2001-10-26
Applicant: 松下电工株式会社
IPC: H01J1/30
Abstract: 一种电场放射型电子源(10),在由玻璃衬底构成的绝缘性衬底(11)的上侧设置有:由导电性层构成的下部电极(8);含有由氧化或氮化的多孔性半导体构成的漂移部(6a)的强电场漂移层(6);由金薄膜构成的表面电极(7)。而且,外加电压使表面电极(7)相对于下部电极(8)成为正极,并使从下部电极(8)注入强电场漂移层(6)的电子在强电场漂移层(6)中漂移,通过表面电极(7)放射到外部。在下部电极(8)和强电场漂移层(6)之间设置有由n层(21)和p层(22)构成的pn结半导体层,据此,就能防止漏泄电流从下部电极(8)流向表面电极(7),从而降低耗电量。
-
公开(公告)号:CN1886820A
公开(公告)日:2006-12-27
申请号:CN200480034906.X
申请日:2004-10-27
Applicant: 松下电工株式会社
Abstract: 在红外辐射元件(A)中,绝热层(2)沿厚度方向形成于半导体衬底(1)的表面上,其比半导体衬底(1)具有充分小的热导率,加热层(3)形成于绝热层(2)上,其为薄层(平面)形式且比绝热层(2)具有更大的热导率和更大的电导率,用于通电的成对的焊盘(4)形成于发热层(3)上。半导体衬底(1)由硅衬底制成。绝热层(2)和加热层(3)由孔隙率彼此不同的多孔硅层形成,且加热层(3)具有小于绝热层(2)的孔隙率。通过将该红外辐射元件(A)作为气敏传感器的红外辐射源,有可能延长红外辐射源的寿命。
-
公开(公告)号:CN1282210C
公开(公告)日:2006-10-25
申请号:CN99124377.3
申请日:1999-11-16
Applicant: 松下电工株式会社
Abstract: 本发明的场致发射型电子源10,设有n型硅衬底1、直接或通过非掺杂多晶硅层3在n型硅衬底1上形成的强电场漂移层6、以及强电场漂移层6上形成的为金薄膜的导电性薄膜7。n型硅衬底1背面设有欧姆电极2。其中,从n型硅衬底1注入强电场漂移层6的电子,在强电场漂移层6内向正面漂移,经过导电性薄膜7逸出。强电场漂移层6,通过靠阳极氧化处理使n型硅衬底1上形成的多晶硅3多孔化,再用稀硝酸等氧化形成。
-
公开(公告)号:CN1208800C
公开(公告)日:2005-06-29
申请号:CN02148085.0
申请日:2002-10-25
Applicant: 松下电工株式会社
IPC: H01J1/304
CPC classification number: G09G3/22 , B82Y10/00 , G09G2310/0254 , G09G2320/043 , H01J1/312
Abstract: 一种电子源(10),具有由下部电极(12)、漂移层(6)、表面电极(7)构成的电子源元件(10a)。漂移层(6)存在于下部电极(12)和表面电极(7)之间。靠在表面电极(7)和下部电极(12)之间外加使表面电极(7)变为高电位的电压时作用的电场,电子通过漂移层(6),经表面电极(7)而被发射。在表面电极(7)和下部电极(12)之间外加了顺偏压(正电压)时,加压结束后外加反偏压(负电压),漂移层(6)内的收集器(9)捕获的电子向漂移层(6)外发射。由此,电子源(10)的寿命变长。
-
公开(公告)号:CN1462463A
公开(公告)日:2003-12-17
申请号:CN02801378.6
申请日:2002-04-24
Applicant: 松下电工株式会社
CPC classification number: B82Y10/00 , H01J1/304 , H01J1/312 , H01J9/022 , H01J9/025 , H01J2201/30446 , H01J2201/3125
Abstract: 在场致发射型电子源(10)中,在n-型硅衬底(1)上设置强场漂移层(6)和由金薄膜构成的表面电极(7)。在n-型硅衬底(1)的背面上设置欧姆电极(2)。加给直流电压,使表面电极(7)相对于欧姆电极(2)成为正极性。按照这种方式,自欧姆电极(2)通过n-型硅衬底(1)注入到强场漂移层(6)中的电子在该强场漂移层(6)内漂移,并通过表面电极(7)被发射到外面。强场漂移层(6)具有大量纳米级的半导体超微晶粒(63),部分地由构成所述强场漂移层(6)的半导体层形成,还有大量绝缘膜(64),每个膜都形成在每个半导体超微晶粒(63)的表面上,这些薄膜的厚度使得发生电子穿透现象。
-
公开(公告)号:CN1417827A
公开(公告)日:2003-05-14
申请号:CN02142595.7
申请日:2002-09-24
Applicant: 松下电工株式会社
CPC classification number: H01J1/312 , B82Y10/00 , H01J9/022 , H01J2201/30446 , H01J2201/3125
Abstract: 一种场致发射型电子源。在由玻璃基板、陶瓷基板等的绝缘性基板构成的基板(1)一方的主表面上形成由层状导电性碳化物层构成的下部电极(2)。在下部电极(2)上形成无掺杂多晶硅层(3)。在多晶硅层(3)的上面形成由氧化多孔质多晶硅层构成的电子通过层(6)。电子通过层(6)由多晶硅与存在于该多晶硅颗粒边界附近的多个纳米级结晶硅混合而成的复合纳米级结晶层构成。在下部电极(2)与表面电极(7)之间,当被加载使表面电极(2)为高电位的电压时,电子(e-)从下部电极(2)朝向表面电极(7)的方向穿过电子通过层(6),并通过表面电极(7)被发射到外部。
-
-
-
-
-
-
-
-
-