-
公开(公告)号:CN113084347A
公开(公告)日:2021-07-09
申请号:CN202110460781.2
申请日:2021-04-27
Applicant: 广东省科学院中乌焊接研究所 , 华南理工大学
IPC: B23K26/24 , B23K26/323 , B23K26/08 , B23K26/0622
Abstract: 本发明的实施例提供了一种丝粉联合焊接装置及方法,涉及激光焊接领域。丝粉联合焊接装置包括激光焊接机构、位于激光焊接机构一侧的送料机构和位于激光焊接机构另一侧且用于在待焊位置产生脉冲电流的脉冲加热机构;送料机构包括为待焊位置输送填充粉材的送粉机构和为待焊位置输送填充丝材的送丝机构,送丝机构位于送粉机构和激光焊接机构之间。通过送粉机构、送丝机构、激光焊接机构,并配合脉冲加热机构,实现预置粉末和同步送丝的目的,并通过脉冲加热机构降低残余应力,提升接头性能。该焊接装置能够保证足够的填充量,传导焊接送粉方法降低了焊接热输入和异种材料结合面上的金属间化合物生成量及厚度,还改善了焊缝表面成形。
-
公开(公告)号:CN110467769B
公开(公告)日:2021-05-14
申请号:CN201910789158.4
申请日:2019-08-26
Applicant: 华南理工大学
Abstract: 本发明公开了一种抗氧化高密度聚乙烯复合材料,由高密度聚乙烯、炭黑、复合抗氧剂、表面改性剂、无机填料以及流动助剂组成;各组分重量分数配比为:高密度聚乙烯:70‑90;炭黑:2‑2.5;复合抗氧剂:0.5‑2.5;表面改性剂:3‑14;无机填料:4‑10;流动助剂:0.5‑1。本发明制备的抗氧化高密度聚乙烯复合粉末流动性能好、抗氧化性能优异、适用于激光选区烧结制备管道配件。
-
公开(公告)号:CN112721153A
公开(公告)日:2021-04-30
申请号:CN202011480899.3
申请日:2020-12-16
Applicant: 华南理工大学
IPC: B29C64/153 , B29C64/357 , B29C64/35 , B33Y30/00 , B01D50/00 , B08B5/02 , B08B15/04
Abstract: 本发明公开了一种增材制造粉末自动回收装置及方法,装置包括集成粉末清理头、吸气管、吹气管、旋风分离器、粉末回收罐以及气体压力泵;所述集成粉末清理头包括吸气头以及多个吹气头,吸气头通过吸气管与旋风分离器的进气口连接,吹气头通过吹气管与气体压力泵的出气口连接,旋风分离器出气口与气体压力泵进气口连接,旋风分离器底部设有排料口,通过所述排料口旋风分离器与粉末回收罐连接。本发明通过集吸气与吹气于一体的粉末清理头可将成型平面的粉末及打印零件表面的粘附粉末进行有效清理回收,其中吹气使粉末扬起并更容易被吸入粉末回收系统,提高粉末回收效率,吸气可将粉末吸入粉末回收系统进行回收筛分。
-
公开(公告)号:CN112677475A
公开(公告)日:2021-04-20
申请号:CN202011506045.8
申请日:2020-12-18
Applicant: 华南理工大学 , 北京大学第三医院(北京大学第三临床医学院)
IPC: B29C64/135 , B29C64/20 , B29C64/209 , B29C64/264 , B29C64/321 , B29C64/236 , B29C64/393 , B33Y10/00 , B33Y30/00 , B33Y40/00 , B33Y50/02 , A61F2/28
Abstract: 本发明公开了一种原位3D打印软骨修复装置及方法,装置包括透镜、原材料容器、固化光源、转接架、光纤、三通头、推动板、模组、注射针、压板以及机械臂;所述透镜通过U形卡槽固设在三通头内部,三通头与光纤通过螺纹连接,光纤与固化光源通过螺纹连接,固化光源与转接架通过螺栓连接,模组与转接架通过螺栓螺母连接,推动板与模组通过螺栓螺母连接,转接架与机械臂通过螺栓连接,原材料容器与模组通过压板连接,注射针与原材料容器通过螺纹连接。本发明通过数字化手段控制6轴机械臂带动打印喷头直接在软骨缺陷处直接原位打印修复,过程简单,人工介入时间短,可实现多种生物材料、多种结构的高精度原位3D打印精准修复。
-
公开(公告)号:CN112658280A
公开(公告)日:2021-04-16
申请号:CN202011370309.1
申请日:2020-11-30
Applicant: 华南理工大学
IPC: B22F10/28 , B22F3/105 , B22F9/04 , B22F1/00 , B33Y10/00 , B33Y70/10 , B33Y80/00 , C22C21/00 , C22C32/00 , C22C1/05 , C22C1/10
Abstract: 本发明公开了一种基于激光选区熔化铝基碳化硼中子吸收材料与制备;制备过程为:先将球形铝合金粉末、碳化硼粉末、纯钛粉末、纯硅粉末等按照一定比例放入到行星球磨机内进行混合均匀,然后取出干燥,使用激光选区熔化机器进行打印,最终得到高致密、力学性能和中子屏蔽性能较好的铝基碳化硼材料。与现有技术相比,本发明采用激光选区熔化技术制备铝基碳化硼复合材料,其方法工艺过程简单,成型过程碳化硼粉末均匀弥散在铝合金基体中,制备的材料具有高致密性、力学性能优良、具有良好的中子屏蔽性能。
-
公开(公告)号:CN112481612A
公开(公告)日:2021-03-12
申请号:CN202011220331.8
申请日:2020-11-05
Applicant: 华南理工大学
IPC: C23C24/10
Abstract: 本发明涉及一种用于快速装夹的熔覆装置,包括光学组件、喷嘴、激光器与连接件,喷嘴侧部设有第一保护气体通道、冷却介质通道与粉末流道,第一保护气体通道的进气口、冷却介质通道的进水口与出水口以及粉末流道的进粉口均位于喷嘴上端面,连接件上下两端分别与光学组件和喷嘴上端面连接,连接件第一通孔的上端连接有保护气体气源,第二通孔或第三通孔的上端连接有冷却介质供应源,第四通孔的上端连接有金属粉末源,第一通孔、第二通孔、第三通孔与第四通孔的下端分别与第一保护气体通道的进气口、冷却介质通道的进水口和出水口以及粉末流道的进粉口对接,第五通孔上下两端分别与光学组件和激光通道对接,连接件一侧设有刀柄。
-
公开(公告)号:CN110884136A
公开(公告)日:2020-03-17
申请号:CN201911164836.4
申请日:2019-11-25
Applicant: 华南理工大学
IPC: B29C64/336 , B29C64/153 , B29C64/165 , B33Y40/00
Abstract: 本发明公开了一种适于SLM、SLS和BJ的上送粉装置及方法,该装置包括储粉缸、下粉传送机构以及下粉漏斗;所述储粉缸安装于下粉传送机构上方;下粉传送机构包括主动滚轴、从动滚轴以及齿带,主动滚轴、从动滚轴设置于储粉缸的两侧边,齿带缠绕于主动滚轴和从动滚轴上;所述主动滚轴一侧安装有下粉漏斗,下粉漏斗的出粉口正对着铺粉车。本发明的上送粉装置使用齿带传送粉末,齿带的齿顶和储粉缸壁形成密闭的空间,粉末在传送过程中不易漏粉。本发明涉及3D打印技术领域。
-
公开(公告)号:CN110802839A
公开(公告)日:2020-02-18
申请号:CN201911175922.5
申请日:2019-11-26
Applicant: 华南理工大学
IPC: B29C64/153 , B29C64/205 , B29C64/321 , B33Y30/00 , B33Y40/00
Abstract: 本发明公开了一种适用于粘接剂喷射成型的下送粉装置及方法,包括两个粉料缸、一个成型缸,两个粉料缸分布在成型缸的两侧,粉料缸的粉料出口高于成型缸的粉料入口;铺粉车安装于两个粉料缸之间;两个粉料缸底部分别设有可沿粉料缸体滑动的粉料缸底板,成型缸底部设有可沿成型缸体滑动的成型缸底板;三个丝杆的一端分别与两个所述粉料缸底板、一个成型缸底板可拆卸连接,另一端分别与三个动力电机连接。本发明的下送粉装置的粉料出口高于成型缸的粉料入口,可以有效防止成型缸内的杂质被铺粉车刮到粉料缸内,污染粉料缸。同时,成型缸内的杂质被刮到粉料缸侧壁处,减少铺粉车刮刀与杂质的摩擦,降低刮刀摩擦受损概率。本发明涉及3D打印技术领域。
-
公开(公告)号:CN108080637B
公开(公告)日:2020-02-18
申请号:CN201711454417.5
申请日:2017-12-28
Applicant: 华南理工大学
Abstract: 本发明公开了一种层间激光改性的激光选区熔化成型梯度材料的方法;将激光表面改性工艺与激光选区熔化工艺进行整合,通过每激光选区熔化成型一定层数后激光束重新扫描已成型零件进行激光改性的方式,来改变零件不同区域的微观组织和性能,从而获得具有不同性能梯度的高性能零件。同时经过激光束的重新扫描,可以消除层内的空洞、微裂纹、表面凸起等缺陷,提高成型件的致密度和表面质量。零件组织和性能的变化可以通过调整设定的层数、激光重扫描功率、激光束扫描速度和激光束扫描间距的方式实现。因此,本发明在提高成型零件致密度的同时,实现了多性能梯度材料的激光选区熔化技术直接成型,对推动工业技术的发展起到重大作用。
-
公开(公告)号:CN110586939A
公开(公告)日:2019-12-20
申请号:CN201911028845.0
申请日:2019-10-28
Applicant: 华南理工大学
Abstract: 本发明公开了一种高反射材料蓝绿激光微熔化成型方法与装置;该装置包括蓝绿光固体激光器、激光扩束准直器、扫描振镜、f-θ聚焦透镜等。通过对光路设计对加工激光波长、光束质量、发散角等性能进行优化,最终获得10-15μm聚焦光斑;辅以扫描振镜、成型缸信号插补控制和超声震动铺粉装置实现粒径范围5-10μm微细粉末5-15μm的铺粉层厚,最终实现尺寸精度5μm、特征尺寸小于10微米,表面粗糙度Ra小于2μm,致密度大于99%的蓝/绿光激光选区微熔化;此外450-560nm波长激光的应用提高了镁/铝/铜合金等高反射金属粉末在激光选区熔化技术中的吸收率,提高了高反射率金属材料的加工质量与加工效率。
-
-
-
-
-
-
-
-
-