单幅倾斜遥感图像中建筑物的三维重建方法

    公开(公告)号:CN113192204B

    公开(公告)日:2022-08-26

    申请号:CN202110128087.0

    申请日:2021-01-29

    Abstract: 本发明的单幅倾斜遥感图像中建筑物的三维重建方法涉及遥感图像三维建模技术领域,目的是为了克服现有三维重建方法的输入条件复杂以及不满足重建尺度精度要求的问题,方法具体如下:步骤一、从遥感图像中截取至少一个正方形的待重建目标子图;一个待重建目标子图包括一个需三维重建的建筑物的图像,且建筑物的图像的形状中心与待重建目标子图的中心重合;步骤二、将待重建目标子图输入经过训练的单幅图像重建网络,获得三维模型的边界点与边界面;步骤三、根据三维模型的边界点与边界面,利用移动立方体算法生成网格结构的建筑物三维重建模型。

    基于全变差低秩张量分解的高光谱图像异常目标检测方法

    公开(公告)号:CN114565850A

    公开(公告)日:2022-05-31

    申请号:CN202210203988.6

    申请日:2022-03-02

    Abstract: 基于全变差低秩张量分解的高光谱图像异常目标检测方法,属于高光谱遥感图像异常目标检测技术领域。本发明为了解决目前的异常检测方法存在无法很好地分离背景和异常的问题。本发明采用全变差正则化低秩张量分解模型将高光谱图像分解为低秩数据部分和混合信息部分;然后利用l2,1范数和域变换递归滤波器,对混合信息部分进行异常检测;并利用协同表示检测器提取嵌入低秩背景数据部分的异常信息;融合低秩数据和混合信息部分的初始检测结果,得到最终的检测结果。主要用于高光谱图像的异常目标检测。

    基于符号距离特征的跨源遥感数据目标识别方法

    公开(公告)号:CN114266967A

    公开(公告)日:2022-04-01

    申请号:CN202111534994.1

    申请日:2021-12-15

    Abstract: 基于符号距离特征的跨源遥感数据目标识别方法,属于遥感图像目标识别技术领域。为了解决遥感数据目标识别中异源图像特征提取和地物识别存在差异较大的问题,本发明首先获得待识别的遥感图像,并输入符号距离特征提取网络进行符号距离特征提取,得到随机采样点到目标边界的距离值s;当输入数据仅为同源数据,取边界点集为最终边界点集,当输入数据为同一个目标的异源数据时,将可见光图像、红外图像、SAR图像对应的符号距离特征按照比例进行融合,再判定点是否属于目标表面,得到最终的边界点集;然后对得到的三维点集进行三维特征提取,得到三维特征向量,将特征向量XE通过分类器进行识别。主要用于遥感数据的目标识别。

    基于分形深度卷积生成对抗网络的海冰遥感图像仿真方法

    公开(公告)号:CN109360231B

    公开(公告)日:2022-01-07

    申请号:CN201811248556.7

    申请日:2018-10-25

    Abstract: 本发明涉及一种基于分形深度卷积生成对抗网络的海冰遥感图像仿真方法,包括以下步骤:步骤1:收集N幅实际海冰遥感图像,利用分形方法生成N个K×K的海冰场景高程矩阵;步骤2:依据每个高程矩阵和海冰色带,逐一索引生成初始仿真海冰RGB图像集;步骤3:将初始仿真海冰RGB图像矢量化,形成N个初始化矢量数据;步骤4:利用步骤3形成的矢量数据作为生成网络初始输入,同时初始化生成网络和判别网络权重参数;步骤5:利用N幅实际海冰遥感图像训练分形深度卷积生成对抗网络;步骤6:通过步骤1~步骤3重新生成矢量数据,将数据输入步骤5所训练完成的分形深度卷积生成对抗网络。本发明能够降低网络计算量,同时提升海冰仿真效果。

    基于多尺度特征融合的自适应可变占比目标检测方法

    公开(公告)号:CN113313118A

    公开(公告)日:2021-08-27

    申请号:CN202110712902.8

    申请日:2021-06-25

    Abstract: 基于多尺度特征融合的自适应可变占比目标检测方法,属于目标检测技术领域,本发明为解决待测目标是小目标情况下,小目标在特征图上尺寸过小,学习过程中易被大目标主导,导致小目标检测效果较差的问题。它包括:可变占比图像生成器将原始数据生成不同大小的目标数据,然后将目标数据输送至特征提取网络,特征提取网络对特征进行提取,然后将提取的特征输送至多尺度特征生成器,多尺度特征生成器产生三个尺度的特征图,所述三个尺度特征图包括小特征图、中特征图和大特征图,将三个尺度的特征图输送至多尺度预测框中,多尺度预测框对三个尺度的特征图分别生成预测框,预测框内即为目标检测结果。本发明用于目标检测,尤其适用于小目标的目标检测。

    单幅倾斜遥感图像中建筑物的三维重建方法

    公开(公告)号:CN113192204A

    公开(公告)日:2021-07-30

    申请号:CN202110128087.0

    申请日:2021-01-29

    Abstract: 本发明的单幅倾斜遥感图像中建筑物的三维重建方法涉及遥感图像三维建模技术领域,目的是为了克服现有三维重建方法的输入条件复杂以及不满足重建尺度精度要求的问题,方法具体如下:步骤一、从遥感图像中截取至少一个正方形的待重建目标子图;一个待重建目标子图包括一个需三维重建的建筑物的图像,且建筑物的图像的形状中心与待重建目标子图的中心重合;步骤二、将待重建目标子图输入经过训练的单幅图像重建网络,获得三维模型的边界点与边界面;步骤三、根据三维模型的边界点与边界面,利用移动立方体算法生成网格结构的建筑物三维重建模型。

    基于伪样本增强训练的船舶目标检测方法

    公开(公告)号:CN109409286A

    公开(公告)日:2019-03-01

    申请号:CN201811248521.3

    申请日:2018-10-25

    Abstract: 本发明涉及一种基于伪样本增强训练的船舶目标检测方法,包括以下步骤:搜集船舶3D模型数据,生成初步船舶模型;对初步船舶模型进行纹理映射,生成仿真船舶模型;以真实图像为基底,采用正投影方法将仿真船舶模型投射至图像中,生成仿真图像,以仿真图像数据构成伪样本集;将伪样本集与真实图像数据集结合,构成训练集,采用Faster-RCNN目标检测方法进行训练,得到船舶检测网络;使用检测网络对待检测的图像进行船舶检测。本发明降低了Faster-RCNN目标检测方法训练过程中对训练数据量的要求,提升了检测精度,减少了船舶目标漏检。

    基于分形深度卷积生成对抗网络的海冰遥感图像仿真方法

    公开(公告)号:CN109360231A

    公开(公告)日:2019-02-19

    申请号:CN201811248556.7

    申请日:2018-10-25

    Abstract: 本发明涉及一种基于分形深度卷积生成对抗网络的海冰遥感图像仿真方法,包括以下步骤:步骤1:收集N幅实际海冰遥感图像,利用分形方法生成N个K×K的海冰场景高程矩阵;步骤2:依据每个高程矩阵和海冰色带,逐一索引生成初始仿真海冰RGB图像集;步骤3:将初始仿真海冰RGB图像矢量化,形成N个初始化矢量数据;步骤4:利用步骤3形成的矢量数据作为生成网络初始输入,同时初始化生成网络和判别网络权重参数;步骤5:利用N幅实际海冰遥感图像训练分形深度卷积生成对抗网络;步骤6:通过步骤1~步骤3重新生成矢量数据,将数据输入步骤5所训练完成的分形深度卷积生成对抗网络。本发明能够降低网络计算量,同时提升海冰仿真效果。

Patent Agency Ranking