多线激光雷达与多路相机混合标定方法

    公开(公告)号:CN108020826A

    公开(公告)日:2018-05-11

    申请号:CN201711012232.9

    申请日:2017-10-26

    Applicant: 厦门大学

    Abstract: 本发明公开了一种多线激光雷达与多路相机混合标定方法,包括以下步骤:S1、多路相机的原始图像数据、多线激光雷达点云数据以及静态激光雷达点云数据的采集;S2、各相机内参模型的求解;S3、对各相机采集的图像进行去畸变,得到矫正后的图像;S4、将静态激光雷达点云数据配准到多线激光雷达点云坐标系中;S5、在S4配准好的点云数据中获取各相机在多线激光雷达点云坐标系中的位置(Xs,Ys,Zs);S6、在各相机矫正后的图像中选取至少4个靶标的像素坐标(u,v)和相对应的以多线激光雷达为坐标原点的点云中靶标的三维坐标(Xp,Yp,Zp);S7、根据各相机的内参模型、相机位置(Xs,Ys,Zs)及相机所对应的靶标的像素坐标(u,v)和三维坐标(Xp,Yp,Zp),建立共线方程,求出各相机的姿态角元素和9个方向余弦,完成标定。

    融合区域活力的城市交通流量预测方法

    公开(公告)号:CN107967532A

    公开(公告)日:2018-04-27

    申请号:CN201711052176.1

    申请日:2017-10-30

    Applicant: 厦门大学

    Abstract: 本发明公开了一种融合区域活力的城市交通流量预测方法,包括:S1、对城市路网进行区域划分,并计算各个区域的交通流量;S2、设计区域活力模型:利用城市兴趣点的分布和节假日及天气信息,运用3D卷积神经网络(3D CNN)学习城市中各个区域活力的动态变化;S3、设计流量预测模型:融合区域活力与交通流量,运用卷积长短时记忆网络(ConvLSTM)进行流量预测;S4、根据历史数据对区域活力模型和流量预测模型进行同时训练,再利用训练好的模型对各个区域的交通流量进行实时预测。本方法通过融合区域活力,同时考虑了人群活动背后的驱动力和外部因素的影响,能够取得较高的预测精度。

    一种交互式三维点云颜色编辑方法

    公开(公告)号:CN103489224B

    公开(公告)日:2018-04-27

    申请号:CN201310476596.8

    申请日:2013-10-12

    Applicant: 厦门大学

    Abstract: 本发明公开了一种交互式三维点云颜色编辑方法,包括以下步骤:S1、三维点云可视化;S2、三维视图调整;S3、上色颜色选取;S4、三维点云交互选点;S5、三维点云上色;S6、重复步骤S2至步骤S5并循环,直至遍历所有需要进行上色的点云。本发明采用三维投影结合计算机视觉的方法,使得三维点云的颜色编辑过程更符合人类视觉感官,同时通过人机交互的方式,可快速准确的对失真点云进行修正。

    一种基于三维点云数据的电缆自动提取重构方法

    公开(公告)号:CN107784682A

    公开(公告)日:2018-03-09

    申请号:CN201710884106.6

    申请日:2017-09-26

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于三维点云数据的电缆自动提取重构方法,包括以下步骤:S1、获取三维点云数据集P,并对整个数据集P进行网格划分;S2、使用垂直间隔过滤算法和基于密度的过滤算法过滤地面和植物点集;S3、使用概率霍夫变换进行电缆的提取;S4、矩形缓冲区域连接算法进行线段的连接;S5、再次使用过滤算法缩小阈值过滤,并将此次过滤的植物点集设为危险点;S6、使用整体最小二乘算法拟合x-y平面直线和x-z平面的悬挂曲线。本发明所述的方法具有较好的适用性、稳定性和鲁棒性。

    基于高分辨率卫星影像的道路宽度估计方法

    公开(公告)号:CN107203761A

    公开(公告)日:2017-09-26

    申请号:CN201710454604.7

    申请日:2017-06-15

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于高分辨率卫星影像的道路宽度估计方法,根据高分辨率卫星影像中道路的特征,定义了一种新颖的道路宽度描述符,通过统计固定大小的道路块内的像素分布并用直方图的形式表示,可以描述道路的宽度特征;在道路宽度描述符的基础上,结合卷积神经网络,提出了基于卷积神经网络的道路宽度估计方法;针对道路宽度估计结果中存在的宽度不连续问题,根据道路宽度的连续性,定义了一种基于空间一致性的道路宽度估计能量函数,通过最小化该能量函数可以实现卫星影像中道路宽度类别的合理估计。

    基于远距离脉冲激光散斑的微振动测量系统及测量方法

    公开(公告)号:CN103983340B

    公开(公告)日:2017-06-13

    申请号:CN201410213160.4

    申请日:2014-05-20

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于远距离脉冲激光散斑的微振动测量系统,包括脉冲激光器及光探测单元,所述脉冲激光器用于发出高峰值功率、高重复频率的脉冲激光并照射被测目标,所述光探测单元用于接收脉冲激光经被测目标漫反射产生的散斑。本发明采用高峰值功率和高重复率脉冲激光光源替代连续波激光光源,在确保测量安全性(低的激光平均发射功率)的前提下,大幅度提高被测目标返回的回波功率,能够实现对远距离目标的微振动测量,在桥梁和建筑的健康检测、安防系统、侦查和反恐、灾难搜救等领域具有非常重要的实际应用价值。

    一种三维点云道路边界自动提取方法

    公开(公告)号:CN106780524A

    公开(公告)日:2017-05-31

    申请号:CN201610996779.6

    申请日:2016-11-11

    Applicant: 厦门大学

    Abstract: 本发明涉及点云处理领域,具体公开了一种三维点云道路边界自动提取方法,包括以下步骤:S1、对获得的整个三维点云数据集P,筛选种子点进行超体素划分;S2、使用α‑shape算法提取邻近非共面的超体素之间的边界点;S3、使用基于图割的能量最小化算法提取道路边界点;S4、基于欧几里得距离聚类算法去除离群点;S5、将提取的道路边界点拟合成平滑曲线。本发明的方法可以直接运行在大规模三维点云上,可用于不同场景,计算速度快,算法鲁棒性好,可快速提取道路边界。

    一种基于地面激光雷达扫描的树木胸径自动计算方法

    公开(公告)号:CN106383998A

    公开(公告)日:2017-02-08

    申请号:CN201610813737.4

    申请日:2016-09-09

    Applicant: 厦门大学

    CPC classification number: G06F19/00

    Abstract: 本发明公开了一种基于地面激光雷达扫描的树木胸径自动计算方法,本方法再通过树干切割、滤波提高算法的计算速度和鲁棒性;通过自动选取点云拟合,克服了1.3米处无点云或者噪声过大导致无法计算该树胸径的情况;通过圆柱拟合克服了因树干生长角度问题导致圆拟合不准确的问题;通过滑动窗口拟合圆柱提高了计算精度;同时本方法与密度无关,对树干的部分缺失不敏感,克服了远距离树木因密度过低或是遮挡丢失导致难提取的问题;本方法不依赖于扫描站数,对树干点云是否为圆形没有要求,即使是单站扫描,也能达到很好的效果。

    一种室内环境二维与三维联合模型的构建方法和系统

    公开(公告)号:CN105354875A

    公开(公告)日:2016-02-24

    申请号:CN201510622546.5

    申请日:2015-09-25

    Applicant: 厦门大学

    CPC classification number: G06T17/00

    Abstract: 本发明公开了一种室内环境二维与三维联合模型的构建方法和系统,包括:获得所述水平方向设置的二维激光扫描仪输出的二维激光扫描数据,构建二维栅格地图;采用扩展卡尔曼滤波方法,根据惯性传感单元输出的数据与二维栅格地图实现平台六自由度姿态估计;获得两个其底部沿竖直方向安装的二维激光扫描仪输出的二维激光扫描数据,构建室内环境的三维点云数据;将平台六自由度位姿估计的结果作为初始旋转平移矩阵,将所述三维点云数据配准为三维地图;采用二维栅格地图构建中的闭合环路检测原理,进行二维栅格地图的闭环检测,并通过平台位姿调整,获得全局优化的二维栅格地图和三维地图,实现了高效准确的构建二维和三维地图的效果。

    一种高精度激光散斑微振动测量系统及测量方法

    公开(公告)号:CN103983341A

    公开(公告)日:2014-08-13

    申请号:CN201410213410.4

    申请日:2014-05-20

    Applicant: 厦门大学

    Abstract: 本发明公开了一种高精度激光散斑微振动测量系统,包括成像透镜、分束器、空间光调制器、光探测器及调制器驱动系统,所述成像透镜、分束器、空间光调制器及光探测器依次光连接,所述调制器驱动系统与所述分束器光连接,并输出驱动信号到空间光调制器。本发明采用自适应的空间光调制器代替空间光滤波器,能够根据环境的变换进行自适应调整,使得空间光的透过率随着测量环境的变化而变化,从而提高了测量精度。

Patent Agency Ranking