-
公开(公告)号:CN116425546A
公开(公告)日:2023-07-14
申请号:CN202310422731.4
申请日:2023-04-19
Applicant: 吉林大学
IPC: C04B35/528 , C04B35/622
Abstract: 本发明公开了一种大粒径高占比金刚石/碳化硅复合材料制备方法,属于超硬材料合成技术领域,该方法包括:214μm~250μm金刚石、硅粉和碳化硅酸碱处理后,在氩气保护下等离子净化处理;金刚石75%wt~90%wt、碳化硅7%wt~20%wt和硅3%wt~5%wt混匀后加液态石蜡,得到混合粉末,过筛,内组装,冷压预压成型,高温预处理脱蜡,外组装,烘干,高温高压合成,然后降温降压,得到聚晶烧结体,磨床去杯,除杂清洗后得到金刚石/碳化硅聚晶烧结体,本发明利用预处理后的大尺寸且高占比的金刚石、硅和碳化硅采用高温高压法制备高导热性且极低孔隙率的金刚石/碳化硅复合材料。
-
公开(公告)号:CN114156482A
公开(公告)日:2022-03-08
申请号:CN202111456005.1
申请日:2021-12-02
Applicant: 吉林大学
IPC: H01M4/62 , H01M4/66 , H01M10/0562 , H01M10/058
Abstract: 本发明公开了一种纳米金刚石电解液和纳米金刚石固体电解质界面的制备方法。本方法具体是通过紫外UV处理纳米金刚石得到氧终端纳米金刚石颗粒,并均匀分散至商用LiPF6电解液制备纳米金刚石电解液。以石墨为负极,锂片为正极,使用纳米金刚石电解液在无水无氧的环境中制得锂离子电池,并在蓝电测试系统上进行充放电循环。在充放电循环过程中,纳米金刚石电解液中的纳米金刚石颗粒在电场力作用下与锂离子一起移动至石墨负极,最终在石墨阳极表面构建纳米金刚石界面。本发明可抑制锂枝晶和负极材料体积膨胀,而且具有较低的界面电阻,利于锂离子的固相扩散,展示出了比容量高、循环性能好、充放电库伦效率高等优良的性能。
-
公开(公告)号:CN112899640B
公开(公告)日:2022-02-18
申请号:CN202110059884.8
申请日:2021-01-18
Applicant: 吉林大学
IPC: C23C16/27 , C23C16/511 , G01N27/48
Abstract: 本发明纳米晶石墨/硼掺杂金刚石复合材料的制备和用途,属于功能复合结构及其制备和应用的技术领域。本发明的技术方案是采用CVD法一步生长纳米晶石墨/硼掺杂金刚石(NG/BDD)复合电极,并将其作为电化学电极,检测痕量分子。NG的形成是在较高温度下,在B掺杂的作用下使金刚石(111)面表面发生重构而成。本发明BDD的(111)面形成大量NG,增加导电性,提升对检测物质的吸附提高电化学电极的检测灵敏度,可检测多种痕量化学和生物分子。本发明电极制备工艺简单,便于大规模制备,并对金刚石传感器在检测低浓度和痕量化学和生物分子具有重要意义。
-
公开(公告)号:CN111211161A
公开(公告)日:2020-05-29
申请号:CN202010040363.3
申请日:2020-01-15
IPC: H01L29/06 , H01L29/20 , H01L21/336 , H01L29/78
Abstract: 本发明的一种双向散热的纵向氮化镓功率晶体管及其制备方法,属于晶体管制备技术领域。所述的晶体管的结构有硅衬底(1)、导电缓冲层(2)、GaN漂移层(3)、p-GaN电子阻挡层(4)、GaN沟道层(5)、AlGaN薄势垒层(6)、SiN介质层(7)、本征金刚石层(8)、掺硼金刚石层(9)等;制备方法包括在所述硅衬底(1)上生长AlN/GaN超晶格、沉积GaN、沉积p-GaN电子阻挡层(4)等步骤。本发明利用超晶格导电缓冲层实现了硅衬底纵向导通GaN功率晶体管,结合薄势垒结构并且利用SiN介质层恢复接入区实现常关型操作。同时基于SiN介质层及硅衬底与金刚石外延生长的兼容性实现了双向散热结构。
-
公开(公告)号:CN110632156A
公开(公告)日:2019-12-31
申请号:CN201911063770.X
申请日:2019-11-04
Applicant: 吉林大学
IPC: G01N27/416
Abstract: 本发明的一种用于检测黄曲霉毒素B1的适体传感器及其制备方法属于电化学生物传感器的技术领域,所述的传感器是以硼掺杂金刚石薄膜为基底,由适配体/金纳米颗粒/硼掺杂金刚石复合,且由6-巯基己-1-醇占据金纳米颗粒上空白活性位点构成的复合材料;制备方法包括在P型硅上生长硼掺杂多晶金刚石薄膜、溅射金膜、退火、修饰等步骤。本发明制备的传感器具有很高灵敏度、特异性和实用性,且工艺简单,成本低。
-
公开(公告)号:CN106512230A
公开(公告)日:2017-03-22
申请号:CN201611119234.3
申请日:2016-12-08
Applicant: 吉林大学
IPC: A61N5/06 , A61D7/00 , A61K31/203 , A61K47/04 , A61P35/02
CPC classification number: A61N5/062 , A61D7/00 , A61K31/203 , A61K47/02 , A61N2005/0632 , A61N2005/0652 , A61N2005/0663 , A61N2005/0664
Abstract: 本发明的一种蓝光-全反式维甲酸-纳米金刚石协同治疗白血病的装置,属于医疗器械的技术领域。它是由蓝光二极管LED阵列(1),药物盒口(6),血液入口(7)和血循环管路(8)组成。其中蓝光LED置于透光的血流管(5)外照射其内部的血液;全反式维甲酸和纳米金刚石粉按摩尔质量比5~10:1复合,形成载药纳米胶囊。本发明针对治疗白血病,公开一种蓝光结合药物全反式维甲酸-纳米金刚石作用于病人血液的治疗装置,通过蓝光照联合白血病药物ATRA和纳米金刚石协同作用于白血病肿瘤细胞,提高肿瘤细胞的凋亡率,达到更好临床治疗效果。(2),蠕动泵(3),肝素囊(4),血流管(5),血液出
-
公开(公告)号:CN102560687B
公开(公告)日:2014-10-08
申请号:CN201110455720.3
申请日:2011-12-31
Applicant: 吉林大学
IPC: C30B33/12
Abstract: 本发明的一种金刚石纳米坑阵列及其制备方法属于金刚石纳米结构的技术领域。金刚石纳米坑阵列,是在(100)面金刚石单晶表面刻蚀成平均密度为0.5×109~1.5×109cm-2的纳米坑,纳米坑的纵截面形状为倒梯形,坑口宽度80~150纳米;纳米坑内可以置有金纳米颗粒。制备方法是清洁金刚石单晶表面,利用离子溅射法溅镀金膜,用微波激发氧等离子体对覆有金膜的金刚石单晶进行刻蚀。本发明具有操作简单,成本低,可大面积生产,刻蚀气体安全无污染等优点;将纳米金的广泛应用与金刚石的优异特性相结合,为金纳米颗粒提供稳定的基底,能改善金纳米颗粒在应用中所存在的易聚合及加入稳定剂造成表面污染的问题。
-
公开(公告)号:CN102021649A
公开(公告)日:2011-04-20
申请号:CN201010603983.X
申请日:2010-12-24
Applicant: 吉林大学
Abstract: 本发明的利用添加N2O气体化学气相沉积金刚石单晶的方法属金刚石单晶材料及其制备方法的技术领域。采用微波等离子体化学气相沉积系统,将单晶金刚石基底经抛光超声清洗处理后置于样品托放在沉积室内,向沉积室内充入氢气、甲烷和笑气,流量比为H2∶CH4∶N2O=750∶75~90∶2~10,在微波功率2~2.5kw、基底温度900~1100℃,气压13~40kPa下生长金刚石单晶。本发明具有方法简单,生长速度快,质量好,成本低,污染小等优点,在N2O浓度的增加对全球气候增温效应越来越显著情况下,既利用废气节能减排,又促进了金刚石的生产。
-
公开(公告)号:CN118748276A
公开(公告)日:2024-10-08
申请号:CN202410753148.6
申请日:2024-06-12
Applicant: 吉林大学
Abstract: 一种锌离子电池电解质添加剂的制备方法,属于锌离子电池技术领域,以纳米金刚石和二甲基亚砜作为电解质添加剂,用于提高水系锌离子电池性能。利用超声分散的方法,在二甲基亚砜中加入纳米金刚石,得到纳米金刚石/二甲基亚砜电解质添加剂,提升水系锌离子电池的容量和循环稳定性。应用纳米金刚石/二甲基亚砜作为电解液添加剂,对锌负极表面起到保护作用。将纳米金刚石/二甲基亚砜作为锌离子电池添加剂时,所组装的对称电池,不对称电池,和全电池具有很好的循环稳定性,较高的库伦效率,良好的可逆比容量与保持率。以纳米金刚石和二甲基亚砜作为电解质添加剂,提升了锌离子电池的容量和循环稳定性,具有良好的成本效益和工业前景。
-
公开(公告)号:CN118579761A
公开(公告)日:2024-09-03
申请号:CN202410505787.0
申请日:2024-04-25
Applicant: 吉林大学
IPC: C01B32/10 , H01M4/58 , H01M4/136 , H01M4/36 , H01M4/1397 , H01M10/0525 , C01B32/21 , C01B25/45 , B82Y30/00 , B82Y40/00
Abstract: 本发明提出了一种以氟化碳为基底纳米金刚石为结合点的三维Li1.5Na1.5V2(PO4)3/NDs/CFx正极材料及其制备方法,属于锂离子电池正极材料技术领域。本发明所得到的正极材料应用于锂离子电池的正极时,展示了良好的循环稳定性。在50mA g‑1电流密度下进行200次循环后的比容量为162mA hg‑1;在1000mA g‑1的高电流密度下,1000次循环后仍达到显著的96mA hg‑1,具有长循环稳定性和高容量性能。本发明所采用的制备方法具有过程简单、易于实现、容易放大等优点,有望未来大规模生产。
-
-
-
-
-
-
-
-
-