-
公开(公告)号:CN115873819B
公开(公告)日:2023-05-02
申请号:CN202310009831.4
申请日:2023-01-05
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于计算生物学、计算机辅助设计和酶工程技术领域,具体涉及基于超级计算辅助获得D‑氨基酸转氨酶突变体及其应用。本发明基于超级计算辅助技术成功获得一种新的D‑氨基酸转氨酶突变体并对该酶进行了应用。与野生型酶相比,上述D‑氨基酸转氨酶突变体在40℃的半衰期t1/2>12 h,而野生型D‑氨基酸转氨酶仅为8.8 min,突变体的半失活温度T5015为45.3℃,比野生型D‑氨基酸转氨酶提高了约5.4℃。从而显著提高了其热稳定性及酶活性等,有效拓宽其应用领域和范围,具有广泛的工业应用前景,因此具有良好的实际应用之价值。
-
公开(公告)号:CN115834248A
公开(公告)日:2023-03-21
申请号:CN202310063509.X
申请日:2023-02-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据处理相关技术领域,提出了面向信息物理系统的攻击和异常数据流检测方法及装置,包括:获取信息物理系统中实时数据流并将所获取的数据流转换为数据对象集;对所述数据对象集进行预处理后输入至训练好的反向传播网络中,得到数据对象集所对应的数据标签;根据数据对象集所对应的数据标签判断当前数据是否被攻击或攻击类型,对可能存在的威胁进行快速检测。
-
公开(公告)号:CN114781008B
公开(公告)日:2022-10-28
申请号:CN202210395273.5
申请日:2022-04-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东钢铁集团永锋临港有限公司
Abstract: 本发明公开了面向物联网终端固件安全检测的数据识别方法,包括:对待分析固件进行解压;以解压待分析固件的目录作为根目录,遍历根目录中所有文件,若文件类型非链接类或图片类,则使用二进制方式读取文件内容,并利用预先编写的正则表达式匹配特定格式数据,将与预先编写的正则表达式匹配的数据加入预筛选数据集合;提取预筛选数据集合内各数据所属文件中与各数据相关的特征字符,并计算特征字符与预设关键字符集的相似度,并根据相似度降序,对各数据进行验证。本发明还提供了面向物联网终端固件安全检测的数据识别装置。本发明能够对固件中特定格式数据进行检测和提取,降低因固件中存在特定格式数据而造成的安全和隐私泄露风险。
-
公开(公告)号:CN115168856A
公开(公告)日:2022-10-11
申请号:CN202210904928.7
申请日:2022-07-29
Applicant: 山东省计算中心(国家超级计算济南中心) , 贵州大学
Abstract: 本发明公开了二进制代码相似性检测方法,包括:构建二进制文件数据集,并对二进制文件数据集内的二进制文件进行反编译,得到二进制文件的二进制函数;获取二进制函数的汇编代码对bert模型进行训练,得到insbert模型;利用不同架构下的两个相同的二进制函数构建正样本函数对,利用不同的两个二进制函数构建负样本函数对,利用正样本函数对和负样本函数对对insbert模型进行训练,得到funcbert模型。本发明还提供了物联网固件漏洞检测方法。本发明能够跨指令架构检测二进制代码是否相似,可以用于恶意软件分析、版权纠纷、漏洞检测等领域。
-
公开(公告)号:CN111710365B
公开(公告)日:2022-04-08
申请号:CN202010525374.0
申请日:2020-06-10
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G16B40/00 , G06F40/247 , G06F16/36
Abstract: 本发明基于本体的蛋白质/基因同义词表构建方法,包括:a).数据源Uniprot、BioGRID和NCBI Gene的获取;b).数据文件的分割;c).上层本体的建立;d).Uniprot‑Swissprot向上层本体的映射和融合;e).BioGRID向上层本体的映射和融合;f).NCBI Gene向上层本体的映射和融合;g).同义词的去重。本发明的蛋白质/基因同义词表构建方法,建立了同义词规模上更全面、准确度上更可靠、分类信息上更细致的蛋白质/基因同义词表,为进行更高效、准确的文献数据挖掘提供了前提保证,是生物医药专家进行科研发现的有力辅助。
-
公开(公告)号:CN111710365A
公开(公告)日:2020-09-25
申请号:CN202010525374.0
申请日:2020-06-10
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G16B40/00 , G06F40/247 , G06F16/36
Abstract: 本发明基于本体的蛋白质/基因同义词表构建方法,包括:a).数据源Uniprot、BioGRID和NCBI Gene的获取;b).数据文件的分割;c).上层本体的建立;d).Uniprot-Swissprot向上层本体的映射和融合;e).BioGRID向上层本体的映射和融合;f).NCBI Gene向上层本体的映射和融合;g).同义词的去重。本发明的蛋白质/基因同义词表构建方法,建立了同义词规模上更全面、准确度上更可靠、分类信息上更细致的蛋白质/基因同义词表,为进行更高效、准确的文献数据挖掘提供了前提保证,是生物医药专家进行科研发现的有力辅助。
-
公开(公告)号:CN118886003B
公开(公告)日:2025-03-28
申请号:CN202411355197.0
申请日:2024-09-27
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/55 , G06N3/0442 , G06N3/092 , G06Q50/06 , G06N7/01
Abstract: 本发明属于电子数字数据处理的技术领域,更具体地,涉及面向智能电网隐蔽性攻击的时序预测强化学习检测方法。所述方法包括以下步骤:首先,对智能电网进行建模,获得仪器测量数据,并对数据进行预处理;其次,将预处理后的数据作为长短期记忆网络的输入,对智能电网进行状态估计;然后,将智能电网中的攻击检测问题建模为部分可观测马尔可夫决策问题;最后,利用强化学习方法解决部分可观测马尔可夫决策问题,实现智能电网隐蔽性攻击检测。本发明可以以较低的延迟和误检率来检测智能电网中的隐蔽攻击。
-
公开(公告)号:CN119005302B
公开(公告)日:2024-12-20
申请号:CN202411455446.3
申请日:2024-10-18
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/098 , G06F18/241 , G06N3/096 , G06F18/25
Abstract: 本发明属于联邦学习的技术领域,更具体地,涉及一种基于特征提取器与分类器灵活组合的联邦学习方法。所述方法包括:服务器初始化全局模型;如果是第一轮,则把本地分类器更新为全局分类器,如不是,则让本地分类器沿用上一轮次训练后的本地分类器;训练本地分类器,再对本地特征提取器进行训练,全局特征提取器生成全局特征锚点指导本地特征提取器的训练,同时让本地特征提取器先与全局分类器进行组合训练,再与本地分类器进行组合训练;基于客户端样本数量大小,生成聚合权重,并对本地模型聚合,得到新一轮的全局模型;重复步骤直到模型收敛或到达设定的通信轮次。本发明解决了模型性能下降、隐私泄露问题。
-
公开(公告)号:CN118916806A
公开(公告)日:2024-11-08
申请号:CN202410929974.1
申请日:2024-07-11
Applicant: 青岛理工大学 , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , H02J3/00 , G06F21/64 , G06F18/214
Abstract: 本发明公开了一种面向风电功率预测的FDI攻击检测方法,属于风电功率预测技术领域,所述方法包括:获取待检测的风电功率数据,得到待检测数据集;借鉴k折交叉验证的思想对所述待检测数据集进行初步划分,将其均分为k个子集;在每一轮迭代中,轮流选取其中一个子集作为测试集;使用训练完成的SAE对各测试集进行测试,计算SAE重构后的各测试集数据的重构误差;若满足公式:σ>σ0,且Rmax>μ+hσ,则将Rmax对应的具有最大重构误差的测试集标记为被攻击数据,并从所述待检测数据集中移除,原本的k折交叉验证相应地转变为k‑1折交叉验证,转至步骤S103。本发明能够增强风电预测模型的鲁棒性,提高风电厂的经济效益和电网的稳定性。
-
公开(公告)号:CN118468041B
公开(公告)日:2024-10-01
申请号:CN202410924362.3
申请日:2024-07-11
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/214 , G06F18/2135 , G06N3/094 , G06N3/098
Abstract: 本发明属于联邦学习数据安全的技术领域,更具体地,涉及基于生成对抗网络的联邦学习拜占庭节点检测方法、装置及计算机可读存储介质。包括客户端与服务器完成数据集的分配以及对客户端和服务器的模型进行初始化;客户端根据全局模型参数更新本地模型参数并进行训练,训练完成后,将更新后的本地模型参数发送至服务器;服务器进行拜占庭节点检测并排除掉拜占庭节点对应的本地模型参数后,对剩余的客户端本地模型参数进行聚合,得到新的全局模型参数,并下发至客户端;重复上述步骤至训练轮次阈值,得到优化的全局联邦学习模型参数。本发明解决了拜占庭攻击者可以通过对本地参数进行修改并发送给聚合服务器,以使得全局模型性能失稳的问题。
-
-
-
-
-
-
-
-
-