-
公开(公告)号:CN108570541B
公开(公告)日:2020-07-10
申请号:CN201810455449.5
申请日:2018-05-14
Applicant: 东北大学
Abstract: 一种LNG储罐用高锰中厚板的高温热处理方法,属于钢铁材料技术领域,步骤:1)冶炼铸造成钢坯;2)加热并保温;3)将加热后的钢坯经多道次热轧;4)热轧钢材水冷至室温,得到高锰中厚板;5)将高锰中厚板进行热处理;6)将经过热处理的中厚板水淬火至室温,得到热处理后的LNG储罐用高锰中厚板;本发明制得的热处理后的高锰中厚板在‑196℃下的超低温冲击吸收功为128.6~189.9J,与未经过热处理的热轧态中厚板相比‑196℃下的超低温冲击吸收功提高9.6%~44.7%,实现高韧性的前提下提高生产效率,降低生产成本,节能环保。
-
公开(公告)号:CN108570541A
公开(公告)日:2018-09-25
申请号:CN201810455449.5
申请日:2018-05-14
Applicant: 东北大学
Abstract: 一种LNG储罐用高锰中厚板的高温热处理方法,属于钢铁材料技术领域,步骤:1)冶炼铸造成钢坯;2)加热并保温;3)将加热后的钢坯经多道次热轧;4)热轧钢材水冷至室温,得到高锰中厚板;5)将高锰中厚板进行热处理;6)将经过热处理的中厚板水淬火至室温,得到热处理后的LNG储罐用高锰中厚板;本发明制得的热处理后的高锰中厚板在-196℃下的超低温冲击吸收功为128.6~189.9J,与未经过热处理的热轧态中厚板相比-196℃下的超低温冲击吸收功提高9.6%~44.7%,实现高韧性的前提下提高生产效率,降低生产成本,节能环保。
-
公开(公告)号:CN108504936B
公开(公告)日:2020-01-14
申请号:CN201810455448.0
申请日:2018-05-14
Applicant: 东北大学
Abstract: 一种超低温韧性优异的高锰中厚板及其制备方法,属于钢铁材料技术领域,中厚板化学成分按重量百分比为:C:0.31~0.67%,Si:0.02~0.48%,Mn:22.0~27.3%,P:≤0.08%,S:≤0.06%,Al:1.5~4.64%,余量为Fe和不可避免的杂质;制备方法:1)钢坯加热保温;2)对加热后的钢坯进行一阶段轧制,得到热轧钢材;3)热轧钢材冷却,得到‑196℃韧性优异的高锰中厚板;本发明的高锰中厚板轧制态即可使用,具有优异的超低温韧性和较高的强度,且不需要添加合金元素,成本远低于9Ni钢。
-
公开(公告)号:CN108672515B
公开(公告)日:2019-12-24
申请号:CN201810455188.7
申请日:2018-05-14
Applicant: 东北大学
Abstract: 一种LNG储罐用高锰中厚板的轧制方法,属于钢铁材料技术领域,步骤:1)高锰钢铸锭直接锻造开坯成钢坯或高锰钢经熔炼、浇注成薄铸锭;2)钢坯或薄铸锭加热保温;3)采用窄坯宽展轧制法或薄铸坯直接轧制法将钢坯或薄铸锭轧制成热轧钢材;4)冷却后得到LNG储罐用高锰中厚板;本发明可用较薄的坯料生产LNG储罐用高锰中厚板,有利于降低导热系数高锰奥氏体钢的连铸生产难度;制备出的高锰中厚板,其纵向和横向超低温冲击韧性的差异性较小,改善LNG储罐用高锰中厚板超低温冲击韧性各向异性,大大缩短了工艺流程。
-
公开(公告)号:CN109136769B
公开(公告)日:2019-12-10
申请号:CN201811207072.8
申请日:2018-10-17
Applicant: 东北大学
Abstract: 基于QT工艺的低镍型LNG储罐用钢板及其制备方法,所述低镍型LNG储罐用钢板,其化学成分按质量百分数为:C:0.03~0.06%,Si:0.02~0.12%,Mn:0.52~0.98%,Ni:5.72~6.64%,P≤0.006%,S≤0.005%,Mo:0.13~0.32%,余量为Fe和不可避免的杂质。制备方法为:按所述成分选配原料熔炼,浇铸成铸锭;将铸锭加热,保温后进行两阶段控制轧制;轧后空冷至200℃以下;然后,进行淬火(Q)处理和回火(T)处理,出炉后水冷或空冷至室温,得到厚度为12~20mm的低镍型LNG储罐用钢板。
-
公开(公告)号:CN108315655A
公开(公告)日:2018-07-24
申请号:CN201810455834.X
申请日:2018-05-14
Applicant: 东北大学
CPC classification number: C22C38/02 , C21D8/0226 , C22C38/002 , C22C38/04 , C22C38/06 , C22C38/12
Abstract: 一种高屈服强度LNG储罐用高锰中厚板及其制备方法,高锰中厚板化学组成为:C:0.45~0.60%,Si:0.21~0.51%,Mn:23.50~25.50%,P:≤0.009%,S:≤0.010%,V:0.20~0.59%,Al:1.50~2.50%,余量为Fe和不可避免的杂质;方法:1)按照成分配比冶炼、浇注得到方形薄铸锭;2)加热保温;3)加热后的薄铸锭进行完全再结晶区控制轧制;4)先水冷后空冷或直接空冷至室温,得到高屈服强度高锰中厚板;本发明利用晶粒适度细化和沉淀强化提高屈服强度,克服了纯粹采用细晶强化和位错强化所导致的-196℃超低温冲击韧性的下降。
-
公开(公告)号:CN113957353A
公开(公告)日:2022-01-21
申请号:CN202111244686.5
申请日:2021-10-26
Applicant: 东北大学
IPC: C22C38/04 , C22C38/02 , C22C38/06 , C22C38/16 , C22C38/12 , C22C38/38 , C22C38/20 , C22C38/24 , C22C38/26 , C21D8/02 , C21D1/18
Abstract: 本发明的一种4.2K温度下适用的高锰型高韧钢及其制备方法,属于钢铁材料技术领域。高韧钢化学成分按重量百分比为:C:0.40~0.68%,Si:0.18~0.54%,Mn:17.8~24.6%,Al:0~5.1%,Cr:0~5.4%,Cu:0~0.52%,V:0~0.27%,Nb:0~0.24%,P≤0.030%,S≤0.020%,余量为Fe和不可避免杂质;制法为:铸锭经冶炼铸造与均质化处理后,经轧制冷却与热处理,制得高锰型高韧钢。相对于传统极低温领域奥氏体不锈钢,该钢极低温冲击韧性优越,并采用廉价Mn元素稳定奥氏体,代替Ni、Cr、Mo等贵重金属,获得单相奥氏体组织,极大降低合金成本,在核聚变反应堆的超导磁体、液氢/液氧火箭发动机低温推进剂存储等领域具有广阔应用前景。
-
公开(公告)号:CN109023124B
公开(公告)日:2020-06-02
申请号:CN201811207075.1
申请日:2018-10-17
Applicant: 东北大学
Abstract: 高焊接热影响区韧性的LNG储罐用钢板及其制备方法,所述钢板的化学成分按质量百分数为:C:0.03~0.07%,Si:0.02~0.10%,Mn:0.41~1.12%,Ni:5.05~6.77%,P≤0.006%,S≤0.004%,此外还含有Cr≤0.87%、Mo≤0.34%中的一种或两种(不全为0%),余量为Fe和不可避免的杂质。制备方法为:熔炼,浇铸成铸锭;将铸锭加热,保温后进行两阶段控制轧制;轧后采用超快冷技术,得到在线淬火态钢板;将在线淬火态钢板加热,保温后淬火,得到亚温淬火态钢板;将亚温淬火态钢板加热回火,出炉后水冷或空冷至室温,得到LNG储罐用钢板。
-
公开(公告)号:CN112281074A
公开(公告)日:2021-01-29
申请号:CN202011177915.1
申请日:2020-10-29
Applicant: 东北大学
Abstract: 本发明提供一种低密度LNG储罐用高锰中厚板及其制备方法,所述LNG储罐用高锰中厚板化学成分按重量百分比为:C:0.30~0.68%,Si:0.15~0.54%,Mn:17.00~24.50%,Al:1.98~8.03%,P:≤0.020%,S:≤0.0060%,余量为Fe和不可避免的杂质。制备方法:1)冶炼和铸造;2)铸锭均质化处理;3)钢坯的控制轧制;4)钢板的快速冷却,得到低密度LNG储罐用高锰中厚板。本发明中的LNG储罐用高锰中厚板相对于常规的LNG储罐用高锰钢可减重约3.00%~11.54%,可有效降低LNG储运设备自重,采用Al合金化代替Cr、Cu等贵重金属,合金成本也进一步降低。另外,本发明的低密度LNG储罐用高锰中厚板同样具有高的强度和优异的超低温韧性,可满足LNG储运设施的建造要求。
-
公开(公告)号:CN108672515A
公开(公告)日:2018-10-19
申请号:CN201810455188.7
申请日:2018-05-14
Applicant: 东北大学
Abstract: 一种LNG储罐用高锰中厚板的轧制方法,属于钢铁材料技术领域,步骤:1)高锰钢铸锭直接锻造开坯成钢坯或高锰钢经熔炼、浇注成薄铸锭;2)钢坯或薄铸锭加热保温;3)采用窄坯宽展轧制法或薄铸坯直接轧制法将钢坯或薄铸锭轧制成热轧钢材;4)冷却后得到LNG储罐用高锰中厚板;本发明可用较薄的坯料生产LNG储罐用高锰中厚板,有利于降低导热系数高锰奥氏体钢的连铸生产难度;制备出的高锰中厚板,其纵向和横向超低温冲击韧性的差异性较小,改善LNG储罐用高锰中厚板超低温冲击韧性各向异性,大大缩短了工艺流程。
-
-
-
-
-
-
-
-
-