-
公开(公告)号:CN118211733B
公开(公告)日:2025-02-11
申请号:CN202410462665.8
申请日:2024-04-17
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
IPC: G06Q10/04 , G06F18/214 , G06F18/24 , G06N3/0464 , G06N3/084 , G06F17/18
Abstract: 一种松材线虫病发生预测方法、电子设备及存储介质,属于森林病虫害大数据预测与控制技术领域。为提高松材线虫病发生预测的准确性,本发明建立松材线虫病多源影响因子数据集;进行时间和空间的划分,然后进行数据清洗、数据整合、数据转换和归一化处理,划分为对应的训练集和预测集;构建用于松材线虫病的细胞自动机模型;构建用于松材线虫病的时间卷积网络模型;利用处理后的松材线虫病多源影响因子数据集的预测集,输入到训练好的松材线虫病的细胞自动机模型、用于松材线虫病的时间卷积网络模型中,对松材线虫病发生进行预测;将松材线虫病发生预测结果,基于ArcGIS的可视化地理信息系统生成集成图层。本发明预测准确。
-
公开(公告)号:CN113011355B
公开(公告)日:2022-10-11
申请号:CN202110321019.6
申请日:2021-03-25
Applicant: 东北林业大学
IPC: G06V20/10 , G06V10/30 , G06V10/56 , G06V10/774 , G06V10/147
Abstract: 本发明属于松材线虫病图像识别检测技术领域,具体涉及一种松材线虫病图像识别检测方法及装置,通过设置采用深度学习的目标检测技术对松材线虫病进行检测,能有效提高受病木的识别效率且具有较高的检测精度;采用图像智能识别定位方法采用统一的判别标准,有效提高了识别结果的覆盖率,泛化能力强。综合上述优点,松材线虫病图像识别检测方法能及时发现染病松树并确定其分布情况,有效监测松材线虫病疫情的发展动态,为松林管理人员和森林防护人员提供及时准确的信息。
-
公开(公告)号:CN118246596B
公开(公告)日:2025-03-28
申请号:CN202410334837.3
申请日:2024-03-22
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
Abstract: 本发明提出一种松材线虫病扩散蔓延预测方法,属于森林保护学技术领域。包括以下步骤:S1.收集松材线虫病历史发生数据,并存储为栅格数据,再将栅格数据转换为矢量数据;S2.获取松材线虫病的影响因子历史发生数据并对影响因子的相关性进行分析;S3建构基于松材线虫病的传染病动力学模型;S4.建构PGNN物理引导神经网络混合模型;S5.将松材线虫病历史发生数据和相关度强的影响因子数据输入至PGNN物理引导神经网络混合模型中,输出松材线虫病扩散蔓延情况。S6.基于遗传优化算法对PGNN物理引导神经网络模型参数进行优化,返回至S5;解决现有技术中存在的缺乏高效、准确的预测方法的技术问题。
-
公开(公告)号:CN118211733A
公开(公告)日:2024-06-18
申请号:CN202410462665.8
申请日:2024-04-17
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
IPC: G06Q10/04 , G06F18/214 , G06F18/24 , G06N3/0464 , G06N3/084 , G06F17/18
Abstract: 一种松材线虫病发生预测方法、电子设备及存储介质,属于森林病虫害大数据预测与控制技术领域。为提高松材线虫病发生预测的准确性,本发明建立松材线虫病多源影响因子数据集;进行时间和空间的划分,然后进行数据清洗、数据整合、数据转换和归一化处理,划分为对应的训练集和预测集;构建用于松材线虫病的细胞自动机模型;构建用于松材线虫病的时间卷积网络模型;利用处理后的松材线虫病多源影响因子数据集的预测集,输入到训练好的松材线虫病的细胞自动机模型、用于松材线虫病的时间卷积网络模型中,对松材线虫病发生进行预测;将松材线虫病发生预测结果,基于ArcGIS的可视化地理信息系统生成集成图层。本发明预测准确。
-
公开(公告)号:CN113011355A
公开(公告)日:2021-06-22
申请号:CN202110321019.6
申请日:2021-03-25
Applicant: 东北林业大学
Abstract: 本发明属于松材线虫病图像识别检测技术领域,具体涉及一种松材线虫病图像识别检测方法及装置,通过设置采用深度学习的目标检测技术对松材线虫病进行检测,能有效提高受病木的识别效率且具有较高的检测精度;采用图像智能识别定位方法采用统一的判别标准,有效提高了识别结果的覆盖率,泛化能力强。综合上述优点,松材线虫病图像识别检测方法能及时发现染病松树并确定其分布情况,有效监测松材线虫病疫情的发展动态,为松林管理人员和森林防护人员提供及时准确的信息。
-
公开(公告)号:CN118246596A
公开(公告)日:2024-06-25
申请号:CN202410334837.3
申请日:2024-03-22
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
Abstract: 本发明提出一种松材线虫病扩散蔓延预测方法,属于森林保护学技术领域。包括以下步骤:S1.收集松材线虫病历史发生数据,并存储为栅格数据,再将栅格数据转换为矢量数据;S2.获取松材线虫病的影响因子历史发生数据并对影响因子的相关性进行分析;S3建构基于松材线虫病的传染病动力学模型;S4.建构PGNN物理引导神经网络混合模型;S5.将松材线虫病历史发生数据和相关度强的影响因子数据输入至PGNN物理引导神经网络混合模型中,输出松材线虫病扩散蔓延情况。S6.基于遗传优化算法对PGNN物理引导神经网络模型参数进行优化,返回至S5;解决现有技术中存在的缺乏高效、准确的预测方法的技术问题。
-
公开(公告)号:CN214308733U
公开(公告)日:2021-09-28
申请号:CN202120362696.8
申请日:2021-02-07
Applicant: 东北林业大学
IPC: G01C11/02
Abstract: 一种松材线虫病野外快速定位装置,属于松材线虫病防治领域。本实用新型包括无人机、旋转调节装置、角度调节装置和摄像头,无人机底部安装有旋转调节装置,旋转调节装置上配合安装有角度调节装置,角度调节装置上配合安装有摄像头。本实用新型研发目的是为了解决现有的松材线虫定位装置结构较为简单,无法进行多角度精准的图像采集的问题,本实用新型的,可以实现多水平角度的旋转调节,可以实现竖直方向的俯仰角度调节,克服了森林复杂的地理环境,使树木图像获取更加精准,结构简单、设计巧妙、成本低廉,适于推广使用。
-
-
-
-
-
-