一种基于无源效率刻度的核材料滞留量计算方法和终端

    公开(公告)号:CN115374637B

    公开(公告)日:2023-09-19

    申请号:CN202211016759.X

    申请日:2022-08-24

    Abstract: 本发明公开了一种基于无源效率刻度的核材料滞留量计算方法和终端,包括以下步骤:采用蒙特卡罗模拟方法对探测器晶体各项参数进行准确模拟,获取探测器晶体的各项模拟参数;现场测量各工况下的几何条件,并根据核材料滞留量沉积设备及核材料滞留量分布状况建立数学物理模型;在数学物理模型中根据相关计算建立数学模拟,并根据探测器晶体的各项参数,计算出不同工况现场条件下探测器对γ射线的探测频率;根据γ射线的探测频率,计算核材料滞留量。采用本方案,通过无源探测效率刻度方法进行生产线核材料滞留量测量与分析,能尽可能的得到探测效率的真实数据;采用无源刻度,能够提高测试人员的安全性,利用蒙特卡罗模拟方法能够提高测试的准确性。

    控制氮含量的U-Mo合金粉末制备工艺

    公开(公告)号:CN105328196B

    公开(公告)日:2017-03-22

    申请号:CN201510729827.0

    申请日:2015-11-02

    Abstract: 本发明公开了一种控制氮含量的U-Mo合金粉末制备工艺,包括步骤:1)将U-Mo合金锭在保护气体的保护下送至氢化-破碎-脱氢一体化装置的氢化段内,抽真空至不低于3.0×10-3Pa,充入保护气体清洗后,充氢气氢化;2)在破碎段内预烧活性金属粉;3)将上述氢化后的产物在保护气体的保护下移至破碎段内;4)对氢化产物进行破碎处理,破碎时间不超过10s;5)将上述步骤4)中破碎处理后的产物在保护气体的保护下移至脱氢段内,抽真空至不低于3.0×10-3Pa,加热脱氢。本发明通过对HMD法中的各个步骤进行严格的工艺控制,来控制最终制得的U-Mo合金粉末中的氮含量低于150μg/g,满足技术要求。

    一种高密度中子吸收板的制备方法

    公开(公告)号:CN102560168A

    公开(公告)日:2012-07-11

    申请号:CN201010602530.5

    申请日:2010-12-23

    Abstract: 本发明属于中子吸收板的制备方法,具体涉及一种高密度中子吸收板的制备方法。它包括下述步骤:步骤一:制备铝合金盒子;步骤二:装料;步骤三:真空烧结;步骤四:热轧,热轧包括小下压量的多道次轧制和大下压量的多道次轧制;步骤五:热轧退火;步骤六:冷轧;步骤七:冷轧退火,本步骤的退火温度为350℃-440℃,退火时间为30min-70min,到达预定时间后自然冷却到室温。本发明的优点是:本发明采用的方法流程简单,整个过程所需温度相对较低,不会产生界面反应,更不会产生Al4C3。而且本发明所制造出来的中子吸收板在板材的两面均包裹铝合金材料,因此耐磨强度大,更加适于乏燃料运输和贮存。

    一种基于无源效率刻度的核材料滞留量计算方法和终端

    公开(公告)号:CN115374637A

    公开(公告)日:2022-11-22

    申请号:CN202211016759.X

    申请日:2022-08-24

    Abstract: 本发明公开了一种基于无源效率刻度的核材料滞留量计算方法和终端,包括以下步骤:采用蒙特卡罗模拟方法对探测器晶体各项参数进行准确模拟,获取探测器晶体的各项模拟参数;现场测量各工况下的几何条件,并根据核材料滞留量沉积设备及核材料滞留量分布状况建立数学物理模型;在数学物理模型中根据相关计算建立数学模拟,并根据探测器晶体的各项参数,计算出不同工况现场条件下探测器对γ射线的探测频率;根据γ射线的探测频率,计算核材料滞留量。采用本方案,通过无源探测效率刻度方法进行生产线核材料滞留量测量与分析,能尽可能的得到探测效率的真实数据;采用无源刻度,能够提高测试人员的安全性,利用蒙特卡罗模拟方法能够提高测试的准确性。

    控制氮含量的U-Mo合金粉末制备工艺

    公开(公告)号:CN105328196A

    公开(公告)日:2016-02-17

    申请号:CN201510729827.0

    申请日:2015-11-02

    Abstract: 本发明公开了一种控制氮含量的U-Mo合金粉末制备工艺,包括步骤:1)将U-Mo合金锭在保护气体的保护下送至氢化-破碎-脱氢一体化装置的氢化段内,抽真空至不低于3.0×10-3Pa,充入保护气体清洗后,充氢气氢化;2)在破碎段内预烧活性金属粉;3)将上述氢化后的产物在保护气体的保护下移至破碎段内;4)对氢化产物进行破碎处理,破碎时间不超过10s;5)将上述步骤4)中破碎处理后的产物在保护气体的保护下移至脱氢段内,抽真空至不低于3.0×10-3Pa,加热脱氢。本发明通过对HMD法中的各个步骤进行严格的工艺控制,来控制最终制得的U-Mo合金粉末中的氮含量低于150μg/g,满足技术要求。

    铀钼合金弥散燃料板制备方法

    公开(公告)号:CN104952500B

    公开(公告)日:2017-05-03

    申请号:CN201510398046.8

    申请日:2015-07-09

    Abstract: 本发明公开的是铀钼合金弥散燃料板制备方法,包括以下步骤:A、配料步骤:取铀钼合金粉、铝硅合金粉备用;B、混料步骤:将铀钼合金粉、铝硅合金粉投入到三维混料机中进行三维混料操作;C、芯坯成型步骤:将混合后的物料投入到削角成型模具中,采用液压机压制出削角形状的燃料芯坯;D、芯坯除气步骤:将削角形状的燃料芯坯在真空状态中进行热处理除气后得到弥散芯坯;E、组坯步骤:将Al框架和盖板进行机械加工后,进行表面处理,同时将弥散芯坯设置在Al框架中,采用盖板组装后焊接密封,形成轧制坯;F、轧制步骤:将轧制坯加热进行热轧处理成弥散燃料板,热轧完的弥散燃料板进行起泡退火试验,对没有鼓泡的弥散燃料板进行冷轧。

    一种金属氢化物粉料制备工艺

    公开(公告)号:CN104325150A

    公开(公告)日:2015-02-04

    申请号:CN201410626755.2

    申请日:2014-11-10

    Abstract: 本发明公开了一种金属氢化物粉料制备工艺,包括以下步骤:准备步骤:向破碎设备中加入助磨剂;破碎步骤:将金属氢化物加入破碎设备,启动破碎设备对金属氢化物进行破碎、筛分得到金属氢化物粉料。本发明的优点在于:引入助磨剂,使本发明杂质带入量少,工作效率大幅提高,通过该工艺得到的金属氢化物粉料纯度高,粉体分散性好,流动性好。

    铀钼合金弥散燃料板制备方法

    公开(公告)号:CN104952500A

    公开(公告)日:2015-09-30

    申请号:CN201510398046.8

    申请日:2015-07-09

    CPC classification number: G21C21/02

    Abstract: 本发明公开的是铀钼合金弥散燃料板制备方法,包括以下步骤:A、配料步骤:取铀钼合金粉、铝硅合金粉备用;B、混料步骤:将铀钼合金粉、铝硅合金粉投入到三维混料机中进行三维混料操作;C、芯坯成型步骤:将混合后的物料投入到削角成型模具中,采用液压机压制出削角形状的燃料芯坯;D、芯坯除气步骤:将削角形状的燃料芯坯在真空状态中进行热处理除气后得到弥散芯坯;E、组坯步骤:将Al框架和盖板进行机械加工后,进行表面处理,同时将弥散芯坯设置在Al框架中,采用盖板组装后焊接密封,形成轧制坯;F、轧制步骤:将轧制坯加热进行热轧处理成弥散燃料板,热轧完的弥散燃料板进行起泡退火试验,对没有鼓泡的弥散燃料板进行冷轧。

Patent Agency Ranking