-
公开(公告)号:CN114444620A
公开(公告)日:2022-05-06
申请号:CN202210362470.7
申请日:2022-04-08
Applicant: 中国石油大学(华东)
Abstract: 本发明公开了一种基于生成式对抗神经网络的示功图故障诊断方法,属于采油故障诊断技术领域,包括如下步骤:对示功图样本库数据进行数据清洗;基于采油工程理论及典型示功图特性,对示功图数据点进行特征提取;对数量较少的故障类别样本采用生成式对抗神经网络进行生成,生成过程中对生成器网络的输出进行条件约束;基于原始样本及生成样本,将数据划分为训练集、验证集、测试集;采用Xgboost分类算法对样本进行分类;利用准确率和召回率对故障诊断结果进行综合评估;利用训练完成后的分类模型对故障进行实时监测诊断,实时判断故障类型。本发明能够显著提高分类模型对故障样本的特异识别能力,降低故障的误报/漏报率。
-
公开(公告)号:CN114444620B
公开(公告)日:2022-07-22
申请号:CN202210362470.7
申请日:2022-04-08
Applicant: 中国石油大学(华东)
Abstract: 本发明公开了一种基于生成式对抗神经网络的示功图故障诊断方法,属于采油故障诊断技术领域,包括如下步骤:对示功图样本库数据进行数据清洗;基于采油工程理论及典型示功图特性,对示功图数据点进行特征提取;对数量较少的故障类别样本采用生成式对抗神经网络进行生成,生成过程中对生成器网络的输出进行条件约束;基于原始样本及生成样本,将数据划分为训练集、验证集、测试集;采用Xgboost分类算法对样本进行分类;利用准确率和召回率对故障诊断结果进行综合评估;利用训练完成后的分类模型对故障进行实时监测诊断,实时判断故障类型。本发明能够显著提高分类模型对故障样本的特异识别能力,降低故障的误报/漏报率。
-