一种嵌入物理意义的注采量劈分机器学习动态分析方法

    公开(公告)号:CN117521529A

    公开(公告)日:2024-02-06

    申请号:CN202410010439.6

    申请日:2024-01-04

    Abstract: 本发明公开了一种嵌入物理意义的注采量劈分机器学习动态分析方法,属于油藏工程技术领域,包括如下步骤:步骤1、构建流管网格结构矩阵;步骤2、构建特征聚合范围矩阵和多井势能叠加模块;步骤3、构建包含多个分配器子模型的渗透率场表征模块,并对各分配器子模型进行预训练初始化;步骤4、构建油水推进模块,基于油水推进模块计算含水率和产油速率估计值;步骤5、建立产液、产油损失函数,反向传播优化所有神经网络子模块的参数,通过不断迭代训练使得残差下降到指定范围;步骤6、迭代训练完成后,输出各时间步模型中间变量注采劈分系数。本发明能准确地捕捉劈分系数受到的多方面影响,提高对油藏动态行为的理解和预测的精度。

    一种基于傅里叶变换和几何特征的有杆泵工况诊断方法

    公开(公告)号:CN114510880B

    公开(公告)日:2022-07-12

    申请号:CN202210407067.1

    申请日:2022-04-19

    Abstract: 本发明公开了一种基于傅里叶变换和几何特征的有杆泵工况诊断方法,属于有杆泵工况诊断技术领域,包括以下步骤:对所获有杆泵生产数据进行选择;针对示功图进行基于波动方程的傅里叶系数提取;获取示功图曲线数据,进行示功图简单几何特征提取;采用DCA将傅里叶系数与简单几何特征进行融合;使用XGBoost算法建立有杆泵工况诊断模型,并进行模型训练;进行有杆泵工况诊断模型的参数优化;对优化后的有杆泵工况诊断模型,进行模型性能评价;将训练完成的有杆泵工况诊断模型应用到油田现场。本发明能够提高油田开发现场对有杆泵工况诊断的效率,同时提高对油田现有数据的有效利用,实现高效诊断有杆泵工况。

Patent Agency Ranking