石墨烯/活性炭复合材料及制备方法、超级电容器

    公开(公告)号:CN105575674A

    公开(公告)日:2016-05-11

    申请号:CN201410538598.X

    申请日:2014-10-13

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了一种石墨烯/活性炭复合材料,所述复合材料包括石墨烯材料和活性炭材料,其中,所述石墨烯材料具有褶皱结构,所述活性炭材料通过π-π键结合在所述石墨烯材料的表面。该复合材料制备方法为:A)制备初步炭化物;B)制备褶皱石墨烯;C)制备初步炭化物与褶皱石墨烯的混合物,并进行二次炭化;及D)洗涤、粉碎制得石墨烯/活性炭复合材料。本发明还公开了该复合材料在超级电容器中作为电极材料的应用。根据本发明的制备方法制备得到的复合材料,不仅具有传统超级电容器用活性炭的高比表面积的特点,同时还兼具高导电性的特点,从而克服了超级电容器用电极材料的导电性问题。

    一种新型三维氮掺杂石墨烯复合材料体系的制备方法

    公开(公告)号:CN105000548B

    公开(公告)日:2018-04-24

    申请号:CN201410163426.9

    申请日:2014-04-22

    Abstract: 本发明公开了一种新型三维氮掺杂石墨烯复合体系的制备方法,包括:(1)室温下将氧化石墨烯均匀分散于溶剂中,再加入选定材料和含氮化合物,均匀混合形成混合液;(2)将上述混合液进行反应,反应温度为室温至150℃,反应时间为0‑8 h;(3)将产物冷却至室温,离心收集产物,洗涤、烘干即得氮掺杂石墨烯复合材料。本发明能够高效、可控的制备氮含量在8%~19%的三维氮掺杂石墨烯复合材料体系,并且通过改变加入含氮化合物的种类、用量及反应温度和时间,即能控制其中的氮含量,简单易实施,产率在98.9%以上,在水处理,生物医药,能量产生转化与储能器件,抗静电,热管理,导热散热,传感器,电磁屏蔽,吸波和催化等方面有广泛应用前景。

    一种新型三维氮掺杂石墨烯复合材料体系的制备方法

    公开(公告)号:CN105000548A

    公开(公告)日:2015-10-28

    申请号:CN201410163426.9

    申请日:2014-04-22

    Abstract: 本发明公开了一种新型三维氮掺杂石墨烯复合体系的制备方法,包括:(1)室温下将氧化石墨烯均匀分散于溶剂中,再加入选定材料和含氮化合物,均匀混合形成混合液;(2)将上述混合液进行反应,反应温度为室温至150℃,反应时间为0-8h;(3)将产物冷却至室温,离心收集产物,洗涤、烘干即得氮掺杂石墨烯复合材料。本发明能够高效、可控的制备氮含量在8%~19%的三维氮掺杂石墨烯复合材料体系,并且通过改变加入含氮化合物的种类、用量及反应温度和时间,即能控制其中的氮含量,简单易实施,产率在98.9%以上,在水处理,生物医药,能量产生转化与储能器件,抗静电,热管理,导热散热,传感器,电磁屏蔽,吸波和催化等方面有广泛应用前景。

    氮掺杂石墨烯分散成膜的制备方法及应用

    公开(公告)号:CN105006572A

    公开(公告)日:2015-10-28

    申请号:CN201410163215.5

    申请日:2014-04-22

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了一种氮掺杂石墨烯分散成膜的制备方法及应用。该薄膜主要是通过成膜技术处理氮掺杂石墨烯分散液而形成,该分散液包含氮掺杂石墨烯、阴离子染料及溶剂。本发明首次采用阴离子有机染料对氮掺杂石墨烯进行分散,可达成长期均匀稳定分散效果,利于后续成膜工艺,并可利用现有的任一种氮掺杂石墨烯作为原料,还可根据不同需求制备不同厚度、不同尺寸的氮掺杂石墨烯薄膜,工艺简单、成本低廉、反应时间短、效率较高且无毒、对环境污染小,且所获产品具有非常好的三维结构和高比表面积,可以广泛应用于电子器件、复合材料、传感、生物分析、储能材料等领域,特别是应用于制备柔性及非柔性超级电容器、柔性锂离子电池和燃料电池等储能装置。

    石墨烯/活性炭复合材料及制备方法、超级电容器

    公开(公告)号:CN105575674B

    公开(公告)日:2018-04-24

    申请号:CN201410538598.X

    申请日:2014-10-13

    CPC classification number: Y02E60/13

    Abstract: 本发明公开了一种石墨烯/活性炭复合材料,所述复合材料包括石墨烯材料和活性炭材料,其中,所述石墨烯材料具有褶皱结构,所述活性炭材料通过π‑π键结合在所述石墨烯材料的表面。该复合材料制备方法为:A)制备初步炭化物;B)制备褶皱石墨烯;C)制备初步炭化物与褶皱石墨烯的混合物,并进行二次炭化;及D)洗涤、粉碎制得石墨烯/活性炭复合材料。本发明还公开了该复合材料在超级电容器中作为电极材料的应用。根据本发明的制备方法制备得到的复合材料,不仅具有传统超级电容器用活性炭的高比表面积的特点,同时还兼具高导电性的特点,从而克服了超级电容器用电极材料的导电性问题。

Patent Agency Ranking