-
公开(公告)号:CN111812977B
公开(公告)日:2022-07-29
申请号:CN202010524278.4
申请日:2020-06-10
Applicant: 北京宇航系统工程研究所
IPC: G05B13/04
Abstract: 本发明一种GEO直接定点发射轨道优化方法,步骤如下:1)设置NSGA‑II优化参数;2)设置优化变量取值范围;3)生成发射轨道计算参数条件初始种群;4)生成发射轨道计算结果种群;5)子代种群生成;6)子代种群生成;7)下一代父代种群;8)遗传终止判断。
-
公开(公告)号:CN113734468A
公开(公告)日:2021-12-03
申请号:CN202111005149.5
申请日:2021-08-30
Applicant: 北京宇航系统工程研究所
IPC: B64G1/24
Abstract: 本发明涉及一种基于迭代制导的轨道面精确控制方法,用于执行GEO发射任务的上面级主动段轨道面精确控制。步骤包括:S1、统筹优化升交点赤经控制精度,S2、初步设定迭代制导目标值,S3、实时计算轨道面控制偏差,S4、重新设定上面级主动段迭代制导目标值。本发明采用多目标优化思想,对升交点赤经修正精度进行优化,在提升轨道面控制精度的同时,确保推进剂消耗量工程可接受。
-
公开(公告)号:CN112525453B
公开(公告)日:2023-04-14
申请号:CN202011378751.9
申请日:2020-11-30
Applicant: 北京宇航系统工程研究所
Inventor: 张新宇 , 彭慧莲 , 王国辉 , 林宏 , 杨勇 , 王利 , 陈益 , 周文勇 , 东华鹏 , 张群 , 杨自鹏 , 叶成敏 , 潘忠文 , 肖泽宁 , 郭源 , 冯荣 , 王雪梅 , 齐祥 , 王昊天
IPC: G01M7/02
Abstract: 本发明涉及一种阻尼式单机支架的结构参数设计方法,具体步骤包括:S01、获取并积累运载火箭飞行过程中的激励源及特征频率ωi;S02、建立单机支架有限元模型;S03、开展动力学频率响应分析;S04、将获取的振动响应特性与单机振动试验条件进行对比;S05、若单机振动响应超出其振动试验条件,或对于100Hz内的激励源频率,处于激励源频率3‑5Hz范围内;对于大于100Hz的激励源频率,落入激励源频率的5%范围内,则将支架材料更改为结构/阻尼一体化材料,返回步骤S02,重新进行迭代分析。本发明解决重要单机随火箭发射过程中共振区响应过大问题,达到了抑制动态响应幅值的目的。
-
公开(公告)号:CN113734468B
公开(公告)日:2023-02-03
申请号:CN202111005149.5
申请日:2021-08-30
Applicant: 北京宇航系统工程研究所
IPC: B64G1/24
Abstract: 本发明涉及一种基于迭代制导的轨道面精确控制方法,用于执行GEO发射任务的上面级主动段轨道面精确控制。步骤包括:S1、统筹优化升交点赤经控制精度,S2、初步设定迭代制导目标值,S3、实时计算轨道面控制偏差,S4、重新设定上面级主动段迭代制导目标值。本发明采用多目标优化思想,对升交点赤经修正精度进行优化,在提升轨道面控制精度的同时,确保推进剂消耗量工程可接受。
-
公开(公告)号:CN112525453A
公开(公告)日:2021-03-19
申请号:CN202011378751.9
申请日:2020-11-30
Applicant: 北京宇航系统工程研究所
Inventor: 张新宇 , 彭慧莲 , 王国辉 , 林宏 , 杨勇 , 王利 , 陈益 , 周文勇 , 东华鹏 , 张群 , 杨自鹏 , 叶成敏 , 潘忠文 , 肖泽宁 , 郭源 , 冯荣 , 王雪梅 , 齐祥 , 王昊天
IPC: G01M7/02
Abstract: 本发明涉及一种阻尼式单机支架的结构参数设计方法,具体步骤包括:S01、获取并积累运载火箭飞行过程中的激励源及特征频率ωi;S02、建立单机支架有限元模型;S03、开展动力学频率响应分析;S04、将获取的振动响应特性与单机振动试验条件进行对比;S05、若单机振动响应超出其振动试验条件,或对于100Hz内的激励源频率,处于激励源频率3‑5Hz范围内;对于大于100Hz的激励源频率,落入激励源频率的5%范围内,则将支架材料更改为结构/阻尼一体化材料,返回步骤S02,重新进行迭代分析。本发明解决重要单机随火箭发射过程中共振区响应过大问题,达到了抑制动态响应幅值的目的。
-
公开(公告)号:CN113320717A
公开(公告)日:2021-08-31
申请号:CN202110593208.9
申请日:2021-05-28
Applicant: 北京宇航系统工程研究所
IPC: B64G1/24
Abstract: 一种应对一次点火故障的制导系统重构方法,对于上面级通过两次主动段变轨保证卫星入轨的工作模式,当一次点火失效时,可立即启动第二次点火,保证在亚轨道变轨段上面级能够到达足够高度,第二主动段采用发动机挤压工作方式将上面级/卫星组合体推至入轨点。第一主动段采用迭代制导方法,第二主动段换制导方法及装订诸元,保证入轨精度。本发明提出的应对一次点火故障的制导系统重构方法能够在出现一次点火故障时,充分利用发动机挤压工作模式,自主在线判别并重构,保证故障情况下卫星入轨精度满足要求,提高系统可靠性。
-
公开(公告)号:CN111812977A
公开(公告)日:2020-10-23
申请号:CN202010524278.4
申请日:2020-06-10
Applicant: 北京宇航系统工程研究所
IPC: G05B13/04
Abstract: 本发明一种GEO直接定点发射轨道优化方法,步骤如下:1)设置NSGA-II优化参数;2)设置优化变量取值范围;3)生成发射轨道计算参数条件初始种群;4)生成发射轨道计算结果种群;5)子代种群生成;6)子代种群生成;7)下一代父代种群;8)遗传终止判断。
-
公开(公告)号:CN113320717B
公开(公告)日:2022-12-13
申请号:CN202110593208.9
申请日:2021-05-28
Applicant: 北京宇航系统工程研究所
IPC: B64G1/24
Abstract: 一种应对一次点火故障的制导系统重构方法,对于上面级通过两次主动段变轨保证卫星入轨的工作模式,当一次点火失效时,可立即启动第二次点火,保证在亚轨道变轨段上面级能够到达足够高度,第二主动段采用发动机挤压工作方式将上面级/卫星组合体推至入轨点。第一主动段采用迭代制导方法,第二主动段换制导方法及装订诸元,保证入轨精度。本发明提出的应对一次点火故障的制导系统重构方法能够在出现一次点火故障时,充分利用发动机挤压工作模式,自主在线判别并重构,保证故障情况下卫星入轨精度满足要求,提高系统可靠性。
-
-
-
-
-
-
-