一种基于时间卷积神经网络的短路类型识别系统

    公开(公告)号:CN119577533A

    公开(公告)日:2025-03-07

    申请号:CN202411615464.3

    申请日:2024-11-13

    Abstract: 本发明涉及电气安全技术领域,具体涉及一种基于时间卷积神经网络的短路类型识别系统。TCN通过因果卷积和膨胀卷积技术,有效捕获序列数据中的局部和全局模式,适用于处理具有长期依赖特性的电气线路数据。模型构建包括数据预处理(清洗、归一化、拆分)、数据集划分(训练集、验证集、测试集)以及模型训练与优化。训练过程中采用交叉熵损失函数和Adam优化算法,实现了对电气线路正常状态、炭化路径型短路及金属短接型短路的准确识别。优化后模型准确率接近100%,显著提升了分类性能。此外,本文还提出了基于TCN的电气线路短路检测方法,强调了实时监测与预警系统的重要性,为电气火灾预防提供了技术支持。

Patent Agency Ranking