-
公开(公告)号:CN118887722B
公开(公告)日:2024-12-03
申请号:CN202411346926.6
申请日:2024-09-26
Applicant: 厦门瑞为信息技术有限公司 , 厦门大学
IPC: G06V40/16 , G06V40/40 , G06V10/82 , G06N3/0464 , G06N3/0895
Abstract: 本发明公开了一种基于自信息增强对比学习的深度伪造人脸检测方法,包括:获取样本图像并进行数据增强生成两个视图;将两个视图输入至特征提取网络,利用多尺度特征增强模块、自信息增强学习模块分别对图像的浅层、中层、深层特征进行学习。所述多尺度特征增强模块用于提高网络的局部与全局特征建模能力;自信息增强学习模块利用自信息度量来量化生成人脸局部区域的自信息差异,突出高信息纹理与形状特征,并通过注意力机制来降低网络对特定伪造痕迹的关注;利用级联的Projector和Predictor架构,结合相互预测机制在高维空间中捕捉伪造模式与面部结构多样性的细微变化。最终利用二分类交叉熵损失函数和相互预测一致性损失函数来优化模型并进行真伪判别。
-
公开(公告)号:CN116434351A
公开(公告)日:2023-07-14
申请号:CN202310442834.7
申请日:2023-04-23
Applicant: 厦门大学
Abstract: 本发明涉及一种基于频率注意力特征融合的伪造人脸检测方法、介质和设备,可充分聚合多种多样的人脸特征信息,有效地加强了人脸特征的表达能力,从而提高伪造人脸检测准确率。检测方法通过增加空域频域特征融合模块,充分利用了图像的空域信息,同时,还可通过频域信息关注到的在伪造人脸生成过程中由于上采样操作而产生的伪造痕迹,实现了多维的信息聚合;变体注意力模块可通过加强的注意力操作,获得最优的特征表示,大大提高了伪造人脸检测的泛化性以及面对真实场景中各种未知篡改方法的鲁棒性,提高了模型的分辨能力,使其在真实场景下也能保持较好的效果。
-
公开(公告)号:CN118887722A
公开(公告)日:2024-11-01
申请号:CN202411346926.6
申请日:2024-09-26
Applicant: 厦门瑞为信息技术有限公司 , 厦门大学
IPC: G06V40/16 , G06V40/40 , G06V10/82 , G06N3/0464 , G06N3/0895
Abstract: 本发明公开了一种基于自信息增强对比学习的深度伪造人脸检测方法,包括:获取样本图像并进行数据增强生成两个视图;将两个视图输入至特征提取网络,利用多尺度特征增强模块、自信息增强学习模块分别对图像的浅层、中层、深层特征进行学习。所述多尺度特征增强模块用于提高网络的局部与全局特征建模能力;自信息增强学习模块利用自信息度量来量化生成人脸局部区域的自信息差异,突出高信息纹理与形状特征,并通过注意力机制来降低网络对特定伪造痕迹的关注;利用级联的Projector和Predictor架构,结合相互预测机制在高维空间中捕捉伪造模式与面部结构多样性的细微变化。最终利用二分类交叉熵损失函数和相互预测一致性损失函数来优化模型并进行真伪判别。
-
-