一种压电微定位平台的固定时间自适应事件触发控制方法

    公开(公告)号:CN114114928B

    公开(公告)日:2024-05-07

    申请号:CN202111450412.1

    申请日:2021-12-01

    Applicant: 吉林大学

    Abstract: 一种压电微定位平台的固定时间自适应事件触发控制方法,本发明的目的是为了解决目前控制方法中存在调节时间长、控制精度有限和通信资源损耗多的问题。步骤为:步骤1:为压电微定位平台建立模型;步骤2:通过复合观测器同时观测不可测状态和未知扰动;步骤3:计算观测误差、跟踪误差、虚拟误差和补偿误差,构造李雅普诺夫函数V并求导得到#imgabs0#步骤4:利用虚拟控制律、命令滤波器、补偿信号和自适应律,进行虚拟控制、命令滤波、信号补偿和自适应控制;步骤5:利用固定时间自适应事件触发控制器,通过该控制器实现固定时间收敛和事件触发,实现对压电微定位平台输出位移的高精度跟踪控制效果。本发明更适合实际应用,可以得到更高的控制精度。

    一种压电陶瓷微动平台的数据驱动自适应滑模迭代控制方法

    公开(公告)号:CN115933414A

    公开(公告)日:2023-04-07

    申请号:CN202310094284.4

    申请日:2023-02-10

    Applicant: 吉林大学

    Abstract: 本发明公开了一种压电陶瓷微动平台的数据驱动自适应滑模迭代控制方法,属于微纳控制技术领域。该方法在基于紧格式动态线性化的数据驱动自适应滑模迭代控制中引入了自适应学习率,设计数据驱动控制器。与现有的技术相比,本发明不需要任何压电陶瓷微动平台的迟滞非线性模型等其他模型的信息,引入了紧格式动态线性化数据模型,避免了对平台建模的复杂过程和所建模型的精确度对控制器有效性的影响;在迭代过程中采用自适应学习率,使得在每一时刻算法都能选取到最合适的学习率从而进一步提高控制器的控制性能。

    一种考虑输入迟滞的压电微定位平台的自适应模糊输出反馈控制方法

    公开(公告)号:CN116540532A

    公开(公告)日:2023-08-04

    申请号:CN202310362064.5

    申请日:2023-04-07

    Applicant: 吉林大学

    Abstract: 本发明公开了一种考虑输入迟滞的压电微定位平台的自适应模糊输出反馈控制方法,步骤包括:1)建立具有迟滞非线性的压电微定位平台模型;2)基于模糊逻辑系统构造新型非线性扩张状态观测器以观测系统不可测状态、迟滞非线性和外部扰动;3)基于命令滤波动态面技术设计命令滤波补偿信号、虚拟控制律和自适应律;4)基于步骤1)‑3)和李雅普诺夫稳定性理论,设计压电微定位平台的自适应模糊输出反馈控制器。本发明所述控制方法利用新型非线性扩张状态观测器同时估计系统不可测状态和包括迟滞及外部扰动在内的系统广义扰动,解决了解析迟滞逆模型难以构造的问题,有效消除了输入迟滞的影响,实现了压电微定位平台的高精度跟踪控制。

    一种压电微定位平台的固定时间自适应事件触发控制方法

    公开(公告)号:CN114114928A

    公开(公告)日:2022-03-01

    申请号:CN202111450412.1

    申请日:2021-12-01

    Applicant: 吉林大学

    Abstract: 一种压电微定位平台的固定时间自适应事件触发控制方法,本发明的目的是为了解决目前控制方法中存在调节时间长、控制精度有限和通信资源损耗多的问题。步骤为:步骤1:为压电微定位平台建立模型;步骤2:通过复合观测器同时观测不可测状态和未知扰动;步骤3:计算观测误差、跟踪误差、虚拟误差和补偿误差,构造李雅普诺夫函数V并求导得到步骤4:利用虚拟控制律、命令滤波器、补偿信号和自适应律,进行虚拟控制、命令滤波、信号补偿和自适应控制;步骤5:利用固定时间自适应事件触发控制器,通过该控制器实现固定时间收敛和事件触发,实现对压电微定位平台输出位移的高精度跟踪控制效果。本发明更适合实际应用,可以得到更高的控制精度。

    一种考虑非对称率相关迟滞输入的压电微定位平台有限时间自适应模糊动态面控制方法

    公开(公告)号:CN116360270A

    公开(公告)日:2023-06-30

    申请号:CN202310408098.3

    申请日:2023-04-17

    Applicant: 吉林大学

    Abstract: 本发明公开了一种考虑非对称率相关迟滞输入的压电微定位平台有限时间自适应模糊动态面控制方法,本发明的目的是解决目前控制方法存在的状态变量难以获取、控制器暂态性能差且非对称率相关迟滞特性难以处理的问题。步骤为:步骤1:建立压电微定位平台的数学模型;步骤2:利用迟滞补偿器消除非对称率相关迟滞,构造模糊状态观测器以估计难以测量的系统状态;步骤3:基于一阶跟踪微分器和动态面技术设计自适应更新律、跟踪微分补偿机制以及虚拟控制律;对模糊逻辑系统更新;步骤4:利用有限时间自适应模糊动态面控制器,结合李雅普诺夫稳定性理论和有限时间收敛性准则,选取合适的设计参数,保证闭环系统在有限时间内稳定。

Patent Agency Ranking