往复设备缸套摩擦力对轴系扭振影响的监测方法

    公开(公告)号:CN110006658B

    公开(公告)日:2020-11-20

    申请号:CN201910284798.X

    申请日:2019-04-10

    Abstract: 本发明提供的是一种往复设备缸套摩擦力对轴系扭振影响的监测方法。一:计算轴系扭转振动的固有频率;二:通过LMS采集仪测试不同润滑状态下轴系扭振的固有频率;三:将步骤一的计算的固有频率与步骤二的测试的固有频率进行对比,若没有变化,则将摩擦力作为轴系振动的激励力计算;若发生变化,则将摩擦力转换为系统的阻尼项进行计算;四:将步骤三的计算结果与不考虑摩擦力作用下的轴系扭振结果进行对比,分析摩擦力对轴系扭振振幅、频率的影响。本发明综合考虑摩擦力对轴系扭振的激励效应和对轴系固有特性的影响,提出了较为全面、科学的研究方法,为进一步探索利用扭振信号实现对往复设备拉缸故障的在线监测提供一定的支撑。

    一种活塞环径向刚度测试装置

    公开(公告)号:CN107238493B

    公开(公告)日:2019-09-27

    申请号:CN201710561800.4

    申请日:2017-07-11

    Abstract: 一种活塞环径向刚度测试装置,包括:固定平台、旋转台和测试组件;所述的测试组件包括拉簧、顶柱、压力传感器和刚性绳;固定平台固定于水平基础底座上;固定平台中部有环形凹坑;凹坑的圆心位置为圆型空心并安装有旋转台;旋转台包括内螺纹管、旋钮和螺柱,螺柱安装于内螺纹管内,螺柱上有旋钮;沿凹坑的圆周方向有滑槽,滑槽内安装测试组件;滑槽侧壁与顶柱一侧连接,顶柱的另一侧有与压力传感器匹配的凹槽,用于安装压力传感器;压力传感器抵住活塞环外侧;顶柱上下两端分别有凸台,刚性绳一端缠绕于凸台上,刚性绳另一端缠绕于螺柱上。本发明避免了传统方法摩擦力的影响,测试操作简单,效率高,适用于等压环和非等压环,实用性高。

    一种活塞环疲劳试验机
    3.
    发明公开

    公开(公告)号:CN113933193A

    公开(公告)日:2022-01-14

    申请号:CN202111199120.5

    申请日:2021-10-14

    Abstract: 本发明提供一种活塞环疲劳试验机,包括驱动机构、计数机构、装夹机构;所述驱动机构包括驱动电机,驱动电机输出轴连接飞轮,所述飞轮上设有两个梯形凹槽,两个梯形凹槽靠近圆心的一端各固定一主尺工型块,其中一个主尺工型块上通过固定销连接次尺游标,两个主尺工型块之间固定滑块,滑块上开有通孔与连杆的一端连接;所述装夹机构包括可移动支架、固定支架、条型连接杆和直线导轨,可移动支架与连杆的另一端连接,可移动支架和固定支架安装在直线导轨上,可移动支架和固定支架上垂直安装条型连接杆;计数机构安装在驱动电机上;驱动电机驱动飞轮做旋转运动,飞轮通过连杆带动可移动支架在直线导轨上做往复运动。

    往复设备缸套摩擦力对轴系扭振影响的监测方法

    公开(公告)号:CN110006658A

    公开(公告)日:2019-07-12

    申请号:CN201910284798.X

    申请日:2019-04-10

    Abstract: 本发明提供的是一种往复设备缸套摩擦力对轴系扭振影响的监测方法。一:计算轴系扭转振动的固有频率;二:通过LMS采集仪测试不同润滑状态下轴系扭振的固有频率;三:将步骤一的计算的固有频率与步骤二的测试的固有频率进行对比,若没有变化,则将摩擦力作为轴系振动的激励力计算;若发生变化,则将摩擦力转换为系统的阻尼项进行计算;四:将步骤三的计算结果与不考虑摩擦力作用下的轴系扭振结果进行对比,分析摩擦力对轴系扭振振幅、频率的影响。本发明综合考虑摩擦力对轴系扭振的激励效应和对轴系固有特性的影响,提出了较为全面、科学的研究方法,为进一步探索利用扭振信号实现对往复设备拉缸故障的在线监测提供一定的支撑。

    一种活塞环电磁加载装置

    公开(公告)号:CN108827612A

    公开(公告)日:2018-11-16

    申请号:CN201810510938.6

    申请日:2018-05-25

    CPC classification number: G01M13/00 G01M15/02

    Abstract: 一种活塞环电磁加载装置,属于内燃机测试技术领域。本发明由机械装置、电磁加载电路两大部分组成;通过活塞夹具内的通电螺线管与通电电流的大小在被测活塞环的环背处产生已知大小和方向的电磁场。通电螺线管产生的电磁场作用在通电的环背加载导线处,产生安培力;使用电位器改变环背加载导线的电流,使其所产生的安培力与内燃机燃烧过程中的环背压力一致,并最终将安培力直接作用在被测活塞环上,以实现对被测活塞环环背处的动态气体作用力的模拟。本发明可以完全模拟被测活塞环在工作过程中的环背处的作用力,以实现对被测活塞环摩擦润滑性能更准确、更真实的研究。

    一种声子晶体的减振蜗杆

    公开(公告)号:CN107606117A

    公开(公告)日:2018-01-19

    申请号:CN201711011275.5

    申请日:2017-10-26

    Abstract: 一种声子晶体的减振蜗杆,包括蜗杆和声子晶体;所述的蜗杆为空心,内部填充声子晶体,蜗杆的两端由端盖密封;所述声子晶体包括声子晶体环和声子晶体芯,声子晶体环包裹住声子晶体芯;所述声子晶体环包括圆环弹性体和圆环质量块,圆环弹性体和圆环质量块交替分布;所述声子晶体芯包括扇形弹性体和扇形质量块,扇形弹性体和扇形质量块交替分布。所述声子晶体芯为圆柱体,声子晶体环和声子晶体芯均为分段结构。所述圆环弹性体和扇形弹性体的密度不同,圆环质量块和扇形质量块的密度不同。本发明在不改变蜗杆外部结构的条件下,有效提升了对低频振动的减振效果。本发明装置具有高对称性,不会引起工作时的偏心问题,且蜗杆带隙位置和宽度可调。

    一种针对于活塞环槽内气体压力状态的集成计算方法

    公开(公告)号:CN110728044B

    公开(公告)日:2022-08-02

    申请号:CN201910938511.0

    申请日:2019-09-30

    Abstract: 本发明的目的在于提供一种针对于活塞环槽内气体压力状态的集成计算方法,通过气室理论求得环槽内气体压力状态分布,而后基于参数化分析,得到影响气体压力的环槽几何参数显著性,且选取最为显著的影响因数作为判定依据。引入Pearson相关系数,建立环槽内气体压力状态与影响参数之间的函数关系。根据相关系数强度表,取0.6为相关程度分界线,而后逆推得到环槽几何参数的临界值。本发明同时适用于低速二冲程内燃机和中高速四冲程内燃机;集成了现有的两种主流计算方法,利用环槽轴向高度等显著因子有效地结合了简易替代法和传统理论计算方法,发挥了各自的优点,避免现有方法的缺陷。

    一种能够实时监测活塞环-缸套摩擦副边界膜厚度的测量装置

    公开(公告)号:CN114578096A

    公开(公告)日:2022-06-03

    申请号:CN202210178962.0

    申请日:2022-02-25

    Abstract: 本发明公开了一种能够实时监测活塞环‑缸套摩擦副边界膜厚度的测量装置,包括安装在支撑台架上的导轨,导轨上面安装往复运动装置;支撑台架上的止点附近安装带有刻度尺的机械臂支架,机械臂支架上安装带有刻度尺的机械臂,机械臂与原子力显微镜连接,原子探针连接在原子力显微镜的下面;油盒通过弹性固定装置安装在往复运动装置上面;油盒内的底部设置有加热装置和温度传感器,油盒内安装有固定缸套试件的夹具;施加载荷机构安装在支撑台架上,并与位于缸套试件上方的活塞环连接。本发明通过机械臂的控制,能够使得原子力显微镜对缸套上止点某一固定位置上的边界膜进行实时监测,操作简单,且精度较高。

    一种活塞环径向截面扭转刚度测试装置及方法

    公开(公告)号:CN107677558B

    公开(公告)日:2020-04-07

    申请号:CN201710783442.1

    申请日:2017-09-04

    Abstract: 本发明属于动力机械领域,具体提供一种活塞环径向截面扭转刚度测试装置,包括:活塞环、基座、压体、力传感器、加载把手、调平摆杆、铅垂、位移测量摆杆、第一位移传感器和第二位移传感器;基座上有凹槽,基座凹槽中心有中心立柱;所述中心立柱由上至下依次安装有加载把手、力传感器和压体;活塞环安装于压体侧面与基座凹槽内壁之间,活塞环圆周向截面与中心立柱垂直;基座顶端安装有连杆,连杆上安装调平摆杆、位移测量摆杆;所述第一位移传感器安装于位移测量摆杆与压体上表面之间;所述第二位移传感器安装于压体侧面和基座凹槽内壁之间。本发明考虑了活塞环径向截面变形,活塞环扭矩测定精度高,能够得到精确的活塞环径向截面的扭转刚度。

    一种针对于活塞环槽内气体压力状态的集成计算方法

    公开(公告)号:CN110728044A

    公开(公告)日:2020-01-24

    申请号:CN201910938511.0

    申请日:2019-09-30

    Abstract: 本发明的目的在于提供一种针对于活塞环槽内气体压力状态的集成计算方法,通过气室理论求得环槽内气体压力状态分布,而后基于参数化分析,得到影响气体压力的环槽几何参数显著性,且选取最为显著的影响因数作为判定依据。引入Pearson相关系数,建立环槽内气体压力状态与影响参数之间的函数关系。根据相关系数强度表,取0.6为相关程度分界线,而后逆推得到环槽几何参数的临界值。本发明同时适用于低速二冲程内燃机和中高速四冲程内燃机;集成了现有的两种主流计算方法,利用环槽轴向高度等显著因子有效地结合了简易替代法和传统理论计算方法,发挥了各自的优点,避免现有方法的缺陷。

Patent Agency Ranking