-
公开(公告)号:CN115730433A
公开(公告)日:2023-03-03
申请号:CN202211413056.0
申请日:2022-11-11
Applicant: 哈尔滨工程大学
IPC: G06F30/20 , G06F30/17 , G06F119/08
Abstract: 本发明公开了混合润滑状态下船用柴油机凸轮副摩擦‑闪温预测方法,应用于船舶内燃机摩擦学领域,包括:分别构建考虑表面真实粗糙度的雷诺方程、膜厚方程、承载方程以及摩擦‑闪温方程,耦合得到凸轮副摩擦‑闪温预测模型;输入待测配气机构运行参数至凸轮副摩擦‑闪温预测模型,得到预测结果。本发明揭示了工况改变及几何结构对其润滑状态和摩擦‑闪温特性影响规律,为船用柴油机配气凸轮‑挺柱副磨损预测及摩擦学优化设计提供理论指导,提高了配气机构性能和使用寿命。
-
公开(公告)号:CN110728044B
公开(公告)日:2022-08-02
申请号:CN201910938511.0
申请日:2019-09-30
Applicant: 哈尔滨工程大学
IPC: G06F30/20 , G06F119/14
Abstract: 本发明的目的在于提供一种针对于活塞环槽内气体压力状态的集成计算方法,通过气室理论求得环槽内气体压力状态分布,而后基于参数化分析,得到影响气体压力的环槽几何参数显著性,且选取最为显著的影响因数作为判定依据。引入Pearson相关系数,建立环槽内气体压力状态与影响参数之间的函数关系。根据相关系数强度表,取0.6为相关程度分界线,而后逆推得到环槽几何参数的临界值。本发明同时适用于低速二冲程内燃机和中高速四冲程内燃机;集成了现有的两种主流计算方法,利用环槽轴向高度等显著因子有效地结合了简易替代法和传统理论计算方法,发挥了各自的优点,避免现有方法的缺陷。
-
公开(公告)号:CN114154318A
公开(公告)日:2022-03-08
申请号:CN202111396704.1
申请日:2021-11-23
Applicant: 哈尔滨工程大学
IPC: G06F30/20 , G06F17/11 , G06Q10/04 , G06F119/14
Abstract: 本发明提供了一种基于微观润滑的球轴承动力学特性预测方法,主要考虑微观粗糙表面对润滑油膜的影响,包括具有横向纹理、纵向纹理和各向同性的粗糙表面,开展轴承接触变形、接触载荷及接触角计算,从将接触力学特性映射至轴承运动学状态及刚度特性分析,实现考虑表面粗糙纹理作用的轴承动力学特性预测。
-
公开(公告)号:CN111237152B
公开(公告)日:2021-12-21
申请号:CN202010204323.8
申请日:2020-03-21
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及一种沟槽‑凹坑组合式织构的轴向柱塞泵柱塞,包括柱塞本体,所述柱塞本体沿轴线方向上开设有柱塞腔,所述柱塞本体右端有一柱塞球头,所述柱塞球头沿所述柱塞本体轴线开设有阶梯形孔,所述柱塞腔与所述阶梯形孔连通,所述柱塞本体的表面上开设有沟槽‑凹坑组合式织构,环形沟槽织构Ⅰ,正方形凹坑织构,环形沟槽织构Ⅱ,所述环形沟槽织构在所述柱塞本体表面两侧,所述正方形凹坑织构呈两列交替分布。本发明通过在柱塞表面加工沟槽‑凹坑组合式织构,能够提高柱塞摩擦副处的油膜承载力,减小摩擦力和端泄,降低机械损失,提升容积效率,增强流体的挤压效应从而改善润滑特性,对指导柱塞摩擦副的低摩擦设计具有重要意义。
-
公开(公告)号:CN113779720A
公开(公告)日:2021-12-10
申请号:CN202111019685.0
申请日:2021-09-01
Applicant: 哈尔滨工程大学
IPC: G06F30/17 , G06F30/20 , G06F119/14
Abstract: 本发明的目的在于提供一种考虑真实加工粗糙度的船用凸轮‑挺柱副三维混合润滑状态分析方法,具体为一种考虑真实加工表面三维粗糙度、瞬时接触载荷、瞬时曲率半径及瞬时卷吸速度等影响的凸轮‑挺柱副润滑状态分析方法,能够实现不同加工工艺及不同工况下凸轮‑挺柱副的润滑状态分析,并通过优化结构特征参数改善凸轮‑挺柱动态接触和润滑性能,为船舶柴油机配气凸轮挺柱副磨损分析及低摩擦设计提供理论指导。本发明的通用性较好,可进行任意真实表面粗糙度及工况下的凸轮‑挺柱副润滑状态分析。考虑了真实加工表面三维粗糙度、瞬时接触载荷、瞬时曲率半径及瞬时卷吸速度等影响因素,润滑状态分析精度高,能够从摩擦学角度指导凸轮结构优化设计。
-
公开(公告)号:CN113283032A
公开(公告)日:2021-08-20
申请号:CN202110607950.0
申请日:2021-06-01
Applicant: 哈尔滨工程大学
IPC: G06F30/17 , G06F30/28 , G06F17/13 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明的目的在于提供一种涉及混合润滑‑接触状态的船用齿轮次表层应力计算方法,在考虑考虑界面间混合润滑中三维表面粗糙度的影响,以及船用齿轮啮合周期内瞬态载荷、瞬态曲率及瞬态速度变化影响,借助von Mises应力分析模型,形成齿轮次表层三维动态应力计算方法,可以实现表面微观形貌、工况条件、结构和材料参数对接触应力状态的影响分析,可为船用传动齿轮局部应力集中、疲劳点蚀预测和结构优化提供技术依据。本发明可以实现任意工况条件下的齿轮表面及次表层三维动态应力计算。考虑了齿面微观形貌、轮齿瞬态曲率、瞬态速度及瞬态载荷等,表面及次表层三维动态应力计算精度高,并且能够从齿面局部应力集中和疲劳点蚀方面指导齿轮的优化设计。
-
公开(公告)号:CN111458265A
公开(公告)日:2020-07-28
申请号:CN202010329025.1
申请日:2020-04-24
Applicant: 哈尔滨工程大学
IPC: G01N11/00
Abstract: 本发明一种新型滑油粘度测试装置,包括石油产品运动粘度测定器、便携式低频小信号光电测量系统及固定底座;所述便携式低频小信号光电测量系统包括光电测量装置、信号发生装置、信号接收装置及报警系统;所述石油产品运动粘度测定器放置在固定底座中心位置上,所述固定底座上设置有同一水平面平行的两个刻度尺,所述信号发生装置、信号接收装置分别固定在刻度尺上的相同刻度位置。本发明设计简便,选择合适的制测量装置,本发明的发明理念是将时间测量装置与粘度装置结合,实现了实验时间的自主测量,同时,利用对光学信号的监测代替人眼识别,提高了实验效率和实验精度。
-
公开(公告)号:CN110728044A
公开(公告)日:2020-01-24
申请号:CN201910938511.0
申请日:2019-09-30
Applicant: 哈尔滨工程大学
IPC: G06F30/20 , G06F119/14
Abstract: 本发明的目的在于提供一种针对于活塞环槽内气体压力状态的集成计算方法,通过气室理论求得环槽内气体压力状态分布,而后基于参数化分析,得到影响气体压力的环槽几何参数显著性,且选取最为显著的影响因数作为判定依据。引入Pearson相关系数,建立环槽内气体压力状态与影响参数之间的函数关系。根据相关系数强度表,取0.6为相关程度分界线,而后逆推得到环槽几何参数的临界值。本发明同时适用于低速二冲程内燃机和中高速四冲程内燃机;集成了现有的两种主流计算方法,利用环槽轴向高度等显著因子有效地结合了简易替代法和传统理论计算方法,发挥了各自的优点,避免现有方法的缺陷。
-
公开(公告)号:CN115659490B
公开(公告)日:2025-05-16
申请号:CN202211228492.0
申请日:2022-10-09
Applicant: 哈尔滨工程大学
IPC: G06F30/15 , G06F30/20 , G06F113/08 , G06F119/08
Abstract: 本发明提供了一种考虑真实表面粗糙度的燃机轴承胶合失效预测方法,考虑燃机轴承典型工况及几何特征,耦合三维混合润滑分析模型及第二类Volterra积分方程,建立了燃气轮机轴承副胶合失效预测方法,本方法实用性较好,可实现任意加工工艺及极端工况下轴承副瞬态温升及摩擦系数预测;其中,考虑多因素综合作用的混合润滑方程求解方法,考虑了真实表面粗糙度,润滑油非牛顿特性,船舶轴承特定结构与服役工况,可实现从全膜润滑、混合润滑、边界润滑直至干接触整个润滑状态的预测,并且能够从失效(磨损及胶合等)程度方面指导轴承结构的优化设计。
-
公开(公告)号:CN114169157A
公开(公告)日:2022-03-11
申请号:CN202111439821.1
申请日:2021-11-30
Applicant: 哈尔滨工程大学
IPC: G06F30/20 , G06F17/12 , G06F17/15 , G06F17/18 , G06F119/14 , G06F111/10
Abstract: 本发明提供一种考虑界面摩擦的角接触球轴承动态特性计算方法,描述界面摩擦作用下高速角接触球轴承动态特性变化规律的计算方法,考虑界面摩擦系数对径向摩擦力及轴向拖动力的影响,建立角接触球轴承摩擦动力学特性分析模型,联合计算速度快的牛顿拉夫逊法和对初值不敏感的最速下降法分析获取轴承动态特性,可以实现不同界面摩擦模型对轴承动态接触特性、运动学特性及刚度特性的准确影响分析。
-
-
-
-
-
-
-
-
-