基于加速度前馈的艏向最优极地FPSO锚泊动力定位控制方法

    公开(公告)号:CN113296499B

    公开(公告)日:2022-10-28

    申请号:CN202110405217.0

    申请日:2021-04-15

    Abstract: 本发明提供一种基于加速度前馈的艏向最优极地FPSO锚泊动力定位控制方法。本发明目的在于利用加速度前馈对扰动进行补偿,提高系统状态估计精度,使FPSO保持期望艏向和位置。1、设计了一种根据锚泊缆最大张力和次大张力的基于来冰方向的最佳艏向计算方法。2、通过在状态观测器中增添加速度项,建立了FPSO锚泊动力定位系统加速度前馈观测器,能够有效抑制快变冰扰动对状态估计产生的影响。3、设计了一种加速度前馈与非线性模型预测控制结合的锚泊动力定位控制器,既保留了原系统的非线性特性又考虑了输入输出的约束问题,实现了位置和艏向的控制。

    一种基于蜻蜓算法优化的水面船轨迹跟踪全局鲁棒滑模控制方法

    公开(公告)号:CN110377034B

    公开(公告)日:2022-05-17

    申请号:CN201910613566.4

    申请日:2019-07-09

    Abstract: 本发明属于船舶领域,公开了一种基于蜻蜓算法优化的水面船轨迹跟踪全局鲁棒滑模控制方法,包含如下步骤:步骤(1):建立船舶三自由度运动模型获取船舶的位置及艏向;步骤(2):利用非线性估计滤波器滤去波浪力中的一阶高频干扰力及测量噪声;步骤(3):设计基于全局鲁棒的轨迹跟踪滑模控制器;步骤(4):根据实际情况设计巴特沃斯低通滤波器;步骤(5):引入蜻蜓优化算法对轨迹跟踪滑模控制器中重要参数寻优;步骤(6):将轨迹跟踪滑模控制器、巴特沃斯低通滤波器及非线性估计滤波器与水面船构成闭环系统,输入期望轨迹。本发明保证了航迹跟踪误差的渐进收敛,解决了常规滑模控制趋近段的不鲁棒性,实现了全局快速稳定。

    一种基于加速度前馈的艏向最优极地FPSO锚泊动力定位控制方法

    公开(公告)号:CN113296499A

    公开(公告)日:2021-08-24

    申请号:CN202110405217.0

    申请日:2021-04-15

    Abstract: 本发明提供一种基于加速度前馈的艏向最优极地FPSO锚泊动力定位控制方法。本发明目的在于利用加速度前馈对扰动进行补偿,提高系统状态估计精度,使FPSO保持期望艏向和位置。1、设计了一种根据锚泊缆最大张力和次大张力的基于来冰方向的最佳艏向计算方法。2、通过在状态观测器中增添加速度项,建立了FPSO锚泊动力定位系统加速度前馈观测器,能够有效抑制快变冰扰动对状态估计产生的影响。3、设计了一种加速度前馈与非线性模型预测控制结合的锚泊动力定位控制器,既保留了原系统的非线性特性又考虑了输入输出的约束问题,实现了位置和艏向的控制。

    一种基于动态面滑模的欠驱动无缆水下机器人深度反步控制方法

    公开(公告)号:CN110427040A

    公开(公告)日:2019-11-08

    申请号:CN201910639537.5

    申请日:2019-07-16

    Abstract: 本发明属于机器人领域,公开了一种基于动态面滑模的欠驱动无缆水下机器人深度反步控制方法,包含如下步骤:步骤(1):结合无缆水下机器人在垂平面的运动学模型,确定控制目标为跟踪误差的收敛;步骤(2):基于反步法设计Lyapunov函数,引入虚拟控制变量,并设计动态面消除传统反步法引起的微分爆炸现象;步骤(3):结合步骤(1)和步骤(2)设计滑模面和自适应控制律解决深度控制问题;步骤(4):结合步骤(2)和步骤(3)中的数据,根据李雅普诺夫稳定性理论和比较原理,使用闭环跟踪误差调整增益收敛到接近零的压缩有界集,保证控制系统的半全局一致有界性。本发明解决了模型不确定性和环境干扰问题,对期望路径的跟踪能力强。

    一种基于蜻蜓算法优化的水面船轨迹跟踪全局鲁棒滑模控制方法

    公开(公告)号:CN110377034A

    公开(公告)日:2019-10-25

    申请号:CN201910613566.4

    申请日:2019-07-09

    Abstract: 本发明属于船舶领域,公开了一种基于蜻蜓算法优化的水面船轨迹跟踪全局鲁棒滑模控制方法,包含如下步骤:步骤(1):建立船舶三自由度运动模型获取船舶的位置及艏向;步骤(2):利用非线性估计滤波器滤去波浪力中的一阶高频干扰力及测量噪声;步骤(3):设计基于全局鲁棒的轨迹跟踪滑模控制器;步骤(4):根据实际情况设计巴特沃斯低通滤波器;步骤(5):引入蜻蜓优化算法对轨迹跟踪滑模控制器中重要参数寻优;步骤(6):将轨迹跟踪滑模控制器、巴特沃斯低通滤波器及非线性估计滤波器与水面船构成闭环系统,输入期望轨迹。本发明保证了航迹跟踪误差的渐进收敛,解决了常规滑模控制趋近段的不鲁棒性,实现了全局快速稳定。

    一种基于指令约束的无人水面艇航迹跟踪固定时间控制方法

    公开(公告)号:CN110377036A

    公开(公告)日:2019-10-25

    申请号:CN201910615393.X

    申请日:2019-07-09

    Abstract: 本发明属于船舶领域,公开了一种基于指令约束的无人水面艇航迹跟踪固定时间控制方法,包含如下步骤:步骤(1):采集当前无人水面艇的实际位置信息和实际艏向信息;步骤(2):将无人水面艇期望的位置信息与实际位置信息做差得到无人水面艇的位置误差信息,将无人水面艇期望的艏向信息与实际艏向信息做差得到无人水面艇的艏向误差信息,然后设计虚拟控制律;步骤(3):利用二阶指令滤波器对虚拟控制律进行约束;步骤(4):针对外界海洋环境的干扰力进行干扰观测器的设计;步骤(5):设计固定时间反步控制器,解算得到喷水推进器的推力及转矩信息实现无人水面艇的航迹跟踪控制。本发明保证了控制系统鲁棒性,抗未知时变干扰能力强。

    一种基于动态面滑模的欠驱动无缆水下机器人深度反步控制方法

    公开(公告)号:CN110427040B

    公开(公告)日:2022-07-15

    申请号:CN201910639537.5

    申请日:2019-07-16

    Abstract: 本发明属于机器人领域,公开了一种基于动态面滑模的欠驱动无缆水下机器人深度反步控制方法,包含如下步骤:步骤(1):结合无缆水下机器人在垂平面的运动学模型,确定控制目标为跟踪误差的收敛;步骤(2):基于反步法设计Lyapunov函数,引入虚拟控制变量,并设计动态面消除传统反步法引起的微分爆炸现象;步骤(3):结合步骤(1)和步骤(2)设计滑模面和自适应控制律解决深度控制问题;步骤(4):结合步骤(2)和步骤(3)中的数据,根据李雅普诺夫稳定性理论和比较原理,使用闭环跟踪误差调整增益收敛到接近零的压缩有界集,保证控制系统的半全局一致有界性。本发明解决了模型不确定性和环境干扰问题,对期望路径的跟踪能力强。

    一种基于指令约束的无人水面艇航迹跟踪固定时间控制方法

    公开(公告)号:CN110377036B

    公开(公告)日:2022-04-05

    申请号:CN201910615393.X

    申请日:2019-07-09

    Abstract: 本发明属于船舶领域,公开了一种基于指令约束的无人水面艇航迹跟踪固定时间控制方法,包含如下步骤:步骤(1):采集当前无人水面艇的实际位置信息和实际艏向信息;步骤(2):将无人水面艇期望的位置信息与实际位置信息做差得到无人水面艇的位置误差信息,将无人水面艇期望的艏向信息与实际艏向信息做差得到无人水面艇的艏向误差信息,然后设计虚拟控制律;步骤(3):利用二阶指令滤波器对虚拟控制律进行约束;步骤(4):针对外界海洋环境的干扰力进行干扰观测器的设计;步骤(5):设计固定时间反步控制器,解算得到喷水推进器的推力及转矩信息实现无人水面艇的航迹跟踪控制。本发明保证了控制系统鲁棒性,抗未知时变干扰能力强。

Patent Agency Ranking