一种基于地理位置信息的机会型并行传输方法

    公开(公告)号:CN107592622B

    公开(公告)日:2021-09-17

    申请号:CN201710599176.7

    申请日:2017-07-21

    Abstract: 本发明提出了一种基于地理位置信息的机会型并行传输MAC协议,引入地理位置信息这一要素,对局部并行映射表和并行控制算法两方面进行改进,提出了基于地理位置信息的机会型并行传输MAC协议。在此基础上,对并行映射表和并行控制算法的相应部进行了改进;发送端节点通过局部并行映射表的记录检索到所有可能受到自身干扰的两跳范围内的节点,并依次比较其与每个节点的距离值和自身传输半径之间的关系,满足条件的记录进入映射表中,在最大程度上排除受干扰节点的数量;接收端节点通过与多个发送端节点的距离比较,选取其中最小的一个进行数据通信,在解决隐藏终端问题的同时,提高数据传输的成功率。

    一种面向水下声音信号分类的迁移学习方法

    公开(公告)号:CN109284662A

    公开(公告)日:2019-01-29

    申请号:CN201810766508.0

    申请日:2018-07-12

    Abstract: 本发明公开了一种面向水下声音信号分类的迁移学习方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种面向水下声音信号分类的迁移学习方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。

    一种基于迁移学习的水下声音信号分类方法

    公开(公告)号:CN109284662B

    公开(公告)日:2022-02-22

    申请号:CN201810766508.0

    申请日:2018-07-12

    Abstract: 本发明公开了一种基于迁移学习的水下声音信号分类方法,涉及机器学习技术领域;本发明将数据集之间的分布和领域之间的域不变性结合;在类别分类器部分,使用MMD算法去匹配两数据集间的分布差异,并通过对内核的数量以及覆盖范围进行改变,最小化两数据集之间的分布差异;而在域分类器部分,则利用梯度反转去阻止域分类器在误差反向传播阶段的梯度下降,最大化域分类器的分类误差,使分类器具有领域不变性。一种基于迁移学习的水下声音信号分类方法,以动态的调整两种方法在模型进行迭代训练过程中的重要程度。通过实验证明,本发明提出的迁移学习方法要优于传统的分类方法以及现有的迁移学习方法DAN和DSN,并且分类越复杂,效果越明显。

    一种基于地理位置信息的机会型并行传输MAC协议

    公开(公告)号:CN107592622A

    公开(公告)日:2018-01-16

    申请号:CN201710599176.7

    申请日:2017-07-21

    Abstract: 本发明提出了一种基于地理位置信息的机会型并行传输MAC协议,引入地理位置信息这一要素,对局部并行映射表和并行控制算法两方面进行改进,提出了基于地理位置信息的机会型并行传输MAC协议。在此基础上,对并行映射表和并行控制算法的相应部进行了改进;发送端节点通过局部并行映射表的记录检索到所有可能受到自身干扰的两跳范围内的节点,并依次比较其与每个节点的距离值和自身传输半径之间的关系,满足条件的记录进入映射表中,在最大程度上排除受干扰节点的数量;接收端节点通过与多个发送端节点的距离比较,选取其中最小的一个进行数据通信,在解决隐藏终端问题的同时,提高数据传输的成功率。

Patent Agency Ranking