一种基于偏离特征的离群点挖掘方法

    公开(公告)号:CN107562778B

    公开(公告)日:2021-09-28

    申请号:CN201710599251.X

    申请日:2017-07-21

    Abstract: 本发明公开了一种基于偏离特征的离群点挖掘方法,包括以下步骤:(1)将数据集的各个维度划分为h个等间距的间隔,则整个数据集被划分为hd个网格;(2)将每个数据点与网格索引做一个关联,如果一个网格中不包含数据点,则不考虑该网格;(3)对于划分形成的空间中的各个网格,求出网格的质心,并计算质心的局部离群因子;(4)计算每个数据对象的局部离群因子,数据集中对象的局部离群因子等于所属网格质心的离群因子。本发明在检测数据集中的离群点时,采用F_LOF检测算法将数据空间划分为网格,基于网格的质心来计算数据点的局部离群因子,降低了计算时间,提高检测效率,表现出了其优越性。

    一种基于深度卷积网络的舰船噪声识别分类方法

    公开(公告)号:CN107609488B

    公开(公告)日:2020-11-03

    申请号:CN201710717199.3

    申请日:2017-08-21

    Abstract: 本发明公开了一种基于深度卷积网络的舰船噪声识别分类方法,属于水下舰船噪声识别的领域。本发明主要是针对BP神经网络处理的文件数量少,提取特征不明显以及易陷入局部最优解的问题提出的解决方案。该发明首先根据MFCC将原始声音中的噪声去掉,提取出相应有效的特征,这个过程主要是去除干扰性大的噪声。将经过MFCC处理的声音文件转换成深度卷积网络可以接收的格式。通过深度卷积神经网络多层次的提取有效的特征,这样提取的特征的有效性更强,更具有普适性。针对现实中的大量声音数据进行识别分类,减少了人为的干预度,可以更好的区分出不同的舰船噪声,从而达到识别的目的。

    基于卷积神经网络的水下目标特征提取方法

    公开(公告)号:CN107194404B

    公开(公告)日:2021-04-20

    申请号:CN201710237910.5

    申请日:2017-04-13

    Abstract: 本发明提供的是一种基于卷积神经网络的水下目标特征提取方法。1、将原始辐射噪声信号的采样序列,分成25个连续部分,每个部分再设置25个采样点;2、将第j段数据信号的采样样本做归一化和中心化处理;进行短时傅里叶变换得到LoFAR图;4、将向量赋值到已有3维张量中;5、将得到特征向量输入到全连接层进行分类并计算与标签数据的误差,检查损失误差是否低于误差阈值,若低于则停止网络训练,否则进入步骤6;6、使用梯度下降方法对网络从后向前逐层进行参数调整,并转入步骤2。本发明方法的识别率与传统卷积神经网络算法相比,对特征图层进行了空间信息多维度的加权操作,来弥补因全连接层的一维向量化所带来的空间信息丢失的缺陷。

    一种基于偏离特征的离群点挖掘方法

    公开(公告)号:CN107562778A

    公开(公告)日:2018-01-09

    申请号:CN201710599251.X

    申请日:2017-07-21

    Abstract: 本发明公开了一种基于偏离特征的离群点挖掘方法,包括以下步骤:(1)将数据集的各个维度划分为h个等间距的间隔,则整个数据集被划分为hd个网格;(2)将每个数据点与网格索引做一个关联,如果一个网格中不包含数据点,则不考虑该网格;(3)对于划分形成的空间中的各个网格,求出网格的质心,并计算质心的局部离群因子;(4)计算每个数据对象的局部离群因子,数据集中对象的局部离群因子等于所属网格质心的离群因子。本发明在检测数据集中的离群点时,采用F_LOF检测算法将数据空间划分为网格,基于网格的质心来计算数据点的局部离群因子,降低了计算时间,提高检测效率,表现出了其优越性。

    基于卷积神经网络的水下目标特征提取方法

    公开(公告)号:CN107194404A

    公开(公告)日:2017-09-22

    申请号:CN201710237910.5

    申请日:2017-04-13

    CPC classification number: G06K9/4628 G06K9/6262 G06N3/0454 G06N3/084

    Abstract: 本发明提供的是一种基于卷积神经网络的水下目标特征提取方法。1、将原始辐射噪声信号的采样序列,分成25个连续部分,每个部分再设置25个采样点;2、将第j段数据信号的采样样本做归一化和中心化处理;进行短时傅里叶变换得到LoFAR图;4、将向量赋值到已有3维张量中;5、将得到特征向量输入到全连接层进行分类并计算与标签数据的误差,检查损失误差是否低于误差阈值,若低于则停止网络训练,否则进入步骤6;6、使用梯度下降方法对网络从后向前逐层进行参数调整,并转入步骤2。本发明方法的识别率与传统卷积神经网络算法相比,对特征图层进行了空间信息多维度的加权操作,来弥补因全连接层的一维向量化所带来的空间信息丢失的缺陷。

    一种基于深度卷积网络的舰船噪声识别分类方法

    公开(公告)号:CN107609488A

    公开(公告)日:2018-01-19

    申请号:CN201710717199.3

    申请日:2017-08-21

    Abstract: 本发明公开了一种基于深度卷积网络的舰船噪声识别分类方法,属于水下舰船噪声识别的领域。本发明主要是针对BP神经网络处理的文件数量少,提取特征不明显以及易陷入局部最优解的问题提出的解决方案。该发明首先根据MFCC将原始声音中的噪声去掉,提取出相应有效的特征,这个过程主要是去除干扰性大的噪声。将经过MFCC处理的声音文件转换成深度卷积网络可以接收的格式。通过深度卷积神经网络多层次的提取有效的特征,这样提取的特征的有效性更强,更具有普适性。针对现实中的大量声音数据进行识别分类,减少了人为的干预度,可以更好的区分出不同的舰船噪声,从而达到识别的目的。

Patent Agency Ranking