-
公开(公告)号:CN108695864B
公开(公告)日:2021-07-27
申请号:CN201810575743.X
申请日:2018-06-06
Abstract: 本发明公开了一种基于μPMU与SCADA的配电网网络拓扑分析方法,将根据SCADA数据形成的初始节点支路关联矩阵每一行与支路开关矩阵各个元素进行与运算,得到节点支路关联矩阵。通过μPMU采集的模拟电流量分析和校验根据SCADA系统得到的开关量,根据下一时刻μPMU的模拟支路电流判断支路电流是否突变,如果突变则修正支路开关矩阵,将节点支路关联矩阵每一行与实时支路开关矩阵进行与运算,得到实时节点支路关联矩阵。对实时节点支路关联矩阵进行广度优先搜索,得到配电网网络拓扑结构。本发明可以有效地区别负荷变化对于配电网网络拓扑的影响,快速准确的辨识配电网网络拓扑结构的变化,提供实时可靠的配电网网络拓扑。
-
公开(公告)号:CN109117410B
公开(公告)日:2020-11-24
申请号:CN201810891400.4
申请日:2018-08-07
Abstract: 本发明公开一种基于通用异步串行通信接口的高精度对时方法,包括:控制中心主控制器向监控终端控制器发送主时钟的对时时间报文后使能控制中心主控制器的脉冲边沿触发的外部中断;监控终端控制器接收到对时时间报文后解析该对时时间报文,并修正对时时间报文给出的对时时间而获得对时时间修正值,进而使能外部中断;控制中心主控制器在对时时间的秒起始时刻响应外部中断并向监控终端控制器发送同步码报文;当与控制中心主控制器发送的同步码报文对应的电压信号的第一个下降沿出现在其异步串行通信接口的接收引脚时,监控终端控制器响应外部中断将从时钟的时间设置为对时时间修正值。本发明提供对时方法的对时精度可达到微秒量级,且实现成本低廉。
-
公开(公告)号:CN109117410A
公开(公告)日:2019-01-01
申请号:CN201810891400.4
申请日:2018-08-07
Abstract: 本发明公开一种基于通用异步串行通信接口的高精度对时方法,包括:控制中心主控制器向监控终端控制器发送主时钟的对时时间报文后使能控制中心主控制器的脉冲边沿触发的外部中断;监控终端控制器接收到对时时间报文后解析该对时时间报文,并修正对时时间报文给出的对时时间而获得对时时间修正值,进而使能外部中断;控制中心主控制器在对时时间的秒起始时刻响应外部中断并向监控终端控制器发送同步码报文;当与控制中心主控制器发送的同步码报文对应的电压信号的第一个下降沿出现在其异步串行通信接口的接收引脚时,监控终端控制器响应外部中断将从时钟的时间设置为对时时间修正值。本发明提供对时方法的对时精度可达到微秒量级,且实现成本低廉。
-
公开(公告)号:CN108255951B
公开(公告)日:2021-10-08
申请号:CN201711369958.8
申请日:2017-12-18
IPC: G06F16/2458 , G06F16/215 , G06F16/28 , G06F16/903 , G06Q50/06
Abstract: 本发明公开了一种基于数据挖掘的中低压配电网状态估计伪量测量确定方法,属于配电网分析控制领域,包括:将城市地图划分为N个供电网格,利用网络数据采集方法收集N个供电网格内的电力用户信息,构成开源电力用户信息集;利用正则表达式对结构化数据和半结构化数据进行清洗,将非结构化数据转化为电力用户建筑信息,对清洗后的数据和电力用户建筑信息进行属性归约,得到电力用户的属性特征;根据电力用户的属性特征,利用正则表达式对电力用户进行集中等值分析,得到集中用户和不可集中用户;进而得到用户负荷功率,根据用户负荷功率得到伪量测数据。本发明有针对性地实现了数据资源的最大利用,准确高效地确定了配电网络中的伪量测量。
-
公开(公告)号:CN108695864A
公开(公告)日:2018-10-23
申请号:CN201810575743.X
申请日:2018-06-06
Abstract: 本发明公开了一种基于μPMU与SCADA的配电网网络拓扑分析方法,将根据SCADA数据形成的初始节点支路关联矩阵每一行与支路开关矩阵各个元素进行与运算,得到节点支路关联矩阵。通过μPMU采集的模拟电流量分析和校验根据SCADA系统得到的开关量,根据下一时刻μPMU的模拟支路电流判断支路电流是否突变,如果突变则修正支路开关矩阵,将节点支路关联矩阵每一行与实时支路开关矩阵进行与运算,得到实时节点支路关联矩阵。对实时节点支路关联矩阵进行广度优先搜索,得到配电网网络拓扑结构。本发明可以有效地区别负荷变化对于配电网网络拓扑的影响,快速准确的辨识配电网网络拓扑结构的变化,提供实时可靠的配电网网络拓扑。
-
公开(公告)号:CN108255951A
公开(公告)日:2018-07-06
申请号:CN201711369958.8
申请日:2017-12-18
Abstract: 本发明公开了一种基于数据挖掘的中低压配电网状态估计伪量测量确定方法,属于配电网分析控制领域,包括:将城市地图划分为N个供电网格,利用网络数据采集方法收集N个供电网格内的电力用户信息,构成开源电力用户信息集;利用正则表达式对结构化数据和半结构化数据进行清洗,将非结构化数据转化为电力用户建筑信息,对清洗后的数据和电力用户建筑信息进行属性归约,得到电力用户的属性特征;根据电力用户的属性特征,利用正则表达式对电力用户进行集中等值分析,得到集中用户和不可集中用户;进而得到用户负荷功率,根据用户负荷功率得到伪量测数据。本发明有针对性地实现了数据资源的最大利用,准确高效地确定了配电网络中的伪量测量。
-
公开(公告)号:CN119721504A
公开(公告)日:2025-03-28
申请号:CN202510221741.0
申请日:2025-02-27
IPC: G06Q10/063 , H02J3/00 , G06Q50/06
Abstract: 本公开实施例提供异构柔性负荷聚合处理方法及其装置和虚拟电厂平台,方法包括:根据异构柔性负荷设备集群中的多种柔性负荷设备各自的时域状态演变特征分别构建状态演变模型;多种柔性负荷设备的种类包括温控负荷设备、电动车辆和储能设备;基于各种柔性负荷设备的状态演变模型在时域上的时刻对应关系,聚合各状态演变模型,以得到柔性负荷聚合模型;基于柔性负荷聚合模型及每种柔性负荷设备的约束预测异构柔性负荷设备集群在时域上的预测可调容量。通过根据不同种类的柔性负荷设备的各自特征分别建立时域演变模型并形成统一时间尺度的聚合,解决相关技术中的系统与设备控制的时间尺度不一致问题,提升可调资源的调控精准性。
-
公开(公告)号:CN119360238A
公开(公告)日:2025-01-24
申请号:CN202411347261.0
申请日:2024-09-26
IPC: G06V20/17 , G06V10/25 , G06V10/82 , G06V10/44 , G06V10/80 , G06V10/70 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明涉及一种基于改进YOLOv5s的高压输电线鸟巢检测方法,应用于无人终端,利用预先基于鸟巢小数据集训练好的鸟巢检测模型,对所述无人终端捕获的图像中的目标的类别和区域进行预测,实现高压输电线鸟巢检测,其中,所述鸟巢检测模型基于YOLOv5s构建,且所述鸟巢检测模型包括顺次连接的基于DenseNet的Backbone网络、基于双向融合FPN的Neck网络以及Head网络。本发明的模型基于DenseNet和双向融合FPN,有效提高了从图像中提取特征的能力,另外,充分考虑高压输电线鸟巢检测场景下对象尺寸较小的特点,通过提供包容性和排他性两种择一连接的方式,对各个网络进行组织,提高了检测的准确性。
-
公开(公告)号:CN119359990A
公开(公告)日:2025-01-24
申请号:CN202411347263.X
申请日:2024-09-26
IPC: G06V10/25 , G06V10/82 , G06V10/776 , G06V10/771 , G06N3/045 , G06N3/0464
Abstract: 本发明涉及一种基于ER‑YOLO的输电线路鸟巢检测方法和设备,输电线路的鸟巢检测任务中,由于拍摄距离难以统一,鸟巢在画面中具有不同的尺寸,且鸟巢所占画面的面积极其有限,同时检测背景复杂多变。原始的YOLOv10网络模型在特征提取过程中往往忽视小目标的特征信息,这导致在鸟巢目标检测中准确率较低。为了解决这一问题,本发明向YOLOv10主干网络中引入了高效通道注意力模块,并且使用了Repulsion损失函数。这些改进使得模型能够更有效地提取鸟巢特征,通过给有效通道赋予更高的权重,抑制无关背景特征,从而减小背景噪声对目标检测的影响,最终在数据集上的均值平均精度达到了98.9%。
-
公开(公告)号:CN118655418B
公开(公告)日:2024-12-06
申请号:CN202411095640.5
申请日:2024-08-12
Applicant: 国网上海市电力公司
Abstract: 本申请涉及配电网线路故障监测技术领域,具体涉及一种配电网在线状态监测方法及系统,具体包括:采集各时刻配电网主线路及支线路的三相电流值,基于各线路的每一相电流值的绝对值构建电流正向序列;根据不同线路同相电流的电流正向序列元素差异构建任意两个线路同相电流之间的电流形态差异值;结合任意两个线路同相电流的电流正向序列之间的相似度构建每个线路各相电流的故障电流变动值;根据故障电流变动值获取单相接地故障线路;通知运维人员对单相接地故障线路进行维修。提高了单相接地故障的具体线路的识别速度与准确性,具有较高的实时性,降低了传统技术对于发生单相接地故障线路的检测时间,提高配电网运行的可靠性。
-
-
-
-
-
-
-
-
-