-
公开(公告)号:CN116541405A
公开(公告)日:2023-08-04
申请号:CN202310598249.6
申请日:2023-05-25
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司 , 国家电网有限公司
IPC: G06F16/23 , G06F16/22 , G06F16/2458 , G06F16/11 , G06Q50/06
Abstract: 本发明提供一种电力营销数据完整性检测和自动归档方法及系统,属于数据处理技术领域,具体包括:获取不同用户的电力营销历史数据,并将存在完整性缺陷的电力营销历史数据作为缺陷营销数据,获取缺陷营销数据的采集终端,并基于采集终端的型号、采集终端的缺陷营销数据的数据量、采集终端的通信方式进行问题采集终端的筛选,并当用户的采集终端不为问题采集终端时,基于用户的负荷量以及负荷量的变动情况,并结合用户的缺陷概率确定获取频率,并基于获取频率对电力营销数据进行获取,并基于预设频率对用户的电力营销数据进行完整性检测,并基于完整性检测的检测结果进行自动归档,从而保证了电力营销数据的完整性以及检测的效率。
-
公开(公告)号:CN116405241A
公开(公告)日:2023-07-07
申请号:CN202310112275.3
申请日:2023-02-14
Applicant: 国网河南省电力公司信息通信分公司 , 国家电网有限公司
IPC: H04L9/40 , H04L41/0631 , H04L41/22
Abstract: 本发明公开了一种网络安全设备告警的时序关联分析方法及系统,有效的解决了现有的安全设备在告警关联分析方面存在困难的问题。本发明所述时序关联分析方法借助时序关联分析系统定位出攻击行为的攻击位置,利用告警关联模块结合被攻击设备的设备信息、攻击行为产生的时间、攻击类型和结果状态码,得出攻击行为的攻击路径,从而提升攻击监控及分析的效率,并利用告警展示模块将告警结果在安全设备上进行图形化展示,使得使用安全设备的人员能够及时有效的了解到告警结果,使得安全设备能对告警结果之间的关联进行有效的了解,并使得告警平台对告进行攻击行为的封禁操作,进一步提高安全性。
-
公开(公告)号:CN118802362B
公开(公告)日:2025-04-15
申请号:CN202411085886.4
申请日:2024-08-08
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司 , 北京邮电大学
Abstract: 本申请公开了一种基于自适应响应大规模模型的网络流量分析方法,其通过网络嗅探器来实时监测网络流量值,并利用基于深度学习的人工智能技术对网络流量数据进行时序分析,基于历史时间段的网络流量时序特征模式,推理出理想状态下当前时间段的网络流量时序特征,进而基于推理出的网络流量时序特征与实际网络流量时序特征之间的对比分析,从而智能判断是否存在网络异常。这样,可以提高网络流量异常检测的准确性和效率,有效应对大规模网络流量的实时分析,增强网络安全防御能力。
-
公开(公告)号:CN119402281A
公开(公告)日:2025-02-07
申请号:CN202411635465.4
申请日:2024-11-15
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司 , 北京安胜华信科技有限公司
IPC: H04L9/40
Abstract: 本发明公开了一种电网云平台安全和效能兼容的流量牵引模型及其应用,在电网云平台建设中多方云并存组合运行的复杂环境下结合安全性和平台效率进行算力流的牵引模型构建,结合多条流量牵引路径将流量牵引至传统虚拟安全资源、华为云虚拟安全资源、阿里云虚拟安全资源或其他云端虚拟安全资源上,实现对各项云端虚拟安全资源的有效利用和安全防护。本发明不仅构建了基础的引流模型,尤其还进一步面向实际应用构建了层次化的引流矩阵优化算法,能够面向不同目标的进行多重优化。
-
公开(公告)号:CN119377956A
公开(公告)日:2025-01-28
申请号:CN202411469802.7
申请日:2024-10-21
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司
IPC: G06F21/56 , G06F18/2135
Abstract: 本申请公开了一种基于模型防御的内存马检测方法,其通过采用基于深度学习的人工智能技术对被标注为正常运行程序的内存运行行为数据和被检测程序的内存运行行为数据进行语义嵌入编码和时序上下文关联分析,分别挖掘出内存运行参考行为模式特征和内存运行检测行为模式特征,进而通过对两者进行基于主成分特征的匹配分析,从而智能判断该检测程序是否包含内存马。通过这种方式,可以有效提升对于不留下文件痕迹的恶意程序的检测能力,突破传统安全防护措施的局限性,提高内存马检测的准确性和效率。
-
公开(公告)号:CN119011242A
公开(公告)日:2024-11-22
申请号:CN202411098990.7
申请日:2024-08-12
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司 , 北京邮电大学
Abstract: 本申请涉及一种物联网边缘侧网络安全实时威胁感知系统。该方法包括:在物联网边缘侧部署数据采集代理,实时收集网络流量数据和多个电网设备的状态数据,并采用基于深度学习的人工智能技术提取网络流量的时序关联特征以及多个电网设备的全局状态聚类特征,进而基于网络流量和电网设备状态之间的交互响应关系,智能感知边缘侧网络状态是否存在异常。这样,可以更准确地识别出可能的网络异常,从而及时采取防御措施,保障物联网系统的安全运行。
-
公开(公告)号:CN118982028A
公开(公告)日:2024-11-19
申请号:CN202411127448.X
申请日:2024-08-16
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司 , 北京邮电大学
IPC: G06F40/30 , G06F40/284 , G06F16/33 , G06F16/31
Abstract: 本申请涉及智能化情报分析领域,具体涉及一种基于大规模模型协同的威胁情报分析方法。其采用基于深度学习的自然语言处理技术对从暗网网页提取威胁情报内容信息,并分别对威胁情报内容信息进行全局内容信息语义特征提取以及关键词信息语义特征提取,进而基于威胁情报的关键词信息对其全局内容信息进行细粒度的上下文语义关联强化,以实现对威胁情报内容的深度理解和结构化表征。这样,可以有效地将非结构化的威胁情报报告转换为结构化数据,提升威胁情报的利用效率和分析准确性。
-
公开(公告)号:CN117992953A
公开(公告)日:2024-05-07
申请号:CN202410277675.4
申请日:2024-03-12
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司
IPC: G06F21/55 , H04L9/40 , G06F18/2433 , G06F18/27 , G06N3/0455 , G06F123/02
Abstract: 本申请公开了一种基于操作行为跟踪的异常用户行为识别方法,其通过实时获取被跟踪用户对象的用户行为数据,其中,所述用户行为数据包括用户I D、操作时间、操作类型和操作对象,并利用基于深度学习的数据处理和分析算法来对所述被跟踪用户对象的用户行为数据进行语义分析,以此根据所述被跟踪用户对象的用户行为数据中的各个时间点用户行为数据的语义关联关系和相互影响来自动地生成用户行为是否存在异常的检测结果。这样,系统能够实时监控用户行为数据,并在发现异常行为时立即做出反应,以此提高用户行为异常检测的精度和准确性,从而有效保障系统的安全性和稳定性,保护用户免受潜在的风险。
-
公开(公告)号:CN117955703A
公开(公告)日:2024-04-30
申请号:CN202410011824.2
申请日:2024-01-04
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司 , 华北电力大学
IPC: H04L9/40 , G06F18/2433 , G06F18/213 , G06F18/23 , G06N3/0464 , G06F123/02
Abstract: 一种分布式网络攻击感知与主动隔离方法,其通过实时监测采集分布式网络中各个网络节点的网络流量值,并在后端引入数据处理和分析算法来对所述各个网络节点的网络流量值进行分析,从而有效地提取各个网络节点的网络流量值的时序特征和关联关系,并利用伪类中心和语义差异度的概念,来识别潜在的攻击行为,以判断各个网络节点的网络流量是否存在异常,并对异常节点进行主动隔离,从而提高分布式网络的安全性能。这样,能够通过检测分布式网络的各个网络节点的网络流量的异常行为来自动进行分布式网络攻击的感知,并及时采取相应的措施进行主动隔离和防御,从而提高分布式网络的安全性和稳定性。
-
公开(公告)号:CN117896128A
公开(公告)日:2024-04-16
申请号:CN202410011826.1
申请日:2024-01-04
Applicant: 国网河南省电力公司信息通信分公司 , 国网河南省电力公司 , 华北电力大学
IPC: H04L9/40 , G06F18/213 , G06F18/2415 , G06F18/2431 , G06N3/0464 , G06N3/047 , G06N3/08
Abstract: 公开了一种恶意流量智能隔离方法。其首先将恶意流量数据集转化为图像后通过流量模式语义特征提取器进行特征提取以得到恶意流量模式语义特征向量的序列,接着,对所述恶意流量模式语义特征向量的序列进行关联编码以得到上下文恶意流量模式语义特征向量的序列,然后,将待检测流量数据转化为图像后通过所述流量模式语义特征提取器中进行特征提取以得到待检测流量模式语义特征向量,接着,对所述待检测流量模式语义特征向量与各个上下文恶意流量模式语义特征向量进行模式语义关联分析以得到全局对比模式表征特征,最后,基于所述全局对比模式表征特征,确定待检测流量数据为恶意流量数据的概率值。这样,可以保护网络资源和用户利益。
-
-
-
-
-
-
-
-
-