融合混合注意力机制的肠息肉分割方法、系统及介质

    公开(公告)号:CN117036714B

    公开(公告)日:2024-02-09

    申请号:CN202311294605.1

    申请日:2023-10-09

    Applicant: 安徽大学

    Abstract: 本发明的一种融合混合注意力机制的肠息肉分割方法、系统及介质,包括以下内容:对基于内窥镜下的肠息肉图像进行预处理,包括数据增强、自适应阈值对分割目标的区域提取,用于增强分割模型的鲁棒性和挖掘更准确的目标的边界信息;构建特征令牌金字塔模块提高对肠息肉图像的语义信息提取能力,同时采用更少的模块来构建该特征令牌金字塔可以获取具有多尺度感知的语义信息;构建全局特征提取模块利用局部‑全局训练策略降低分割模型对数据样本量的需求并进一步提高分割性能;构建特征融合模块缓解在融合不同尺度特征令牌之间的语义差异;构建多尺度融合模块从元素角度对所有尺度特(56)对比文件Chenchu Xu 等.TransCC: TransformerNetwork for Coronary Artery CCTASegmentation《.arXiv:2310.04779V1》.2023,全文.Jianguo Cui 等.A Multi-Scale Cross-Fusion Medical Image Segmentation NetworkBased on Dual-Attention MechanismTransformer《.MDPI》.2023,全文.刘伟光 等.一种基于 TransUnet 的臂丛神经超声图像分割网络《.无线电通信技术》.2023,全文.

    融合混合注意力机制的肠息肉分割方法、系统及介质

    公开(公告)号:CN117036714A

    公开(公告)日:2023-11-10

    申请号:CN202311294605.1

    申请日:2023-10-09

    Applicant: 安徽大学

    Abstract: 本发明的一种融合混合注意力机制的肠息肉分割方法、系统及介质,包括以下内容:对基于内窥镜下的肠息肉图像进行预处理,包括数据增强、自适应阈值对分割目标的区域提取,用于增强分割模型的鲁棒性和挖掘更准确的目标的边界信息;构建特征令牌金字塔模块提高对肠息肉图像的语义信息提取能力,同时采用更少的模块来构建该特征令牌金字塔可以获取具有多尺度感知的语义信息;构建全局特征提取模块利用局部‑全局训练策略降低分割模型对数据样本量的需求并进一步提高分割性能;构建特征注入模块缓解在融合不同尺度特征令牌之间的语义差异;构建多尺度融合模块从元素角度对所有尺度特征令牌进行融合,减少空间信息的损失并增强网络的鲁棒性。

Patent Agency Ranking