-
公开(公告)号:CN116659829A
公开(公告)日:2023-08-29
申请号:CN202310500680.2
申请日:2023-04-28
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及故障检测技术领域,提供了一种机械设备异常检测方法、系统、存储介质及设备,包括:获取机械设备运行声音;对机械设备运行声音进行变换,得到对数梅尔频谱;基于对数梅尔频谱,采用异常检测模型,进行机械设备异常声音检测;所述异常检测模型训练所采用的训练集,通过对原始训练集进行时移、音量增益、变换、噪声注入和数据增强得到;其中,变换包括,对每个帧进行傅里叶变换得到频域表示,将频域表示映射到梅尔刻度上并分成若干个频带,并对每个频带的能量取对数。增加了数据样本数量和多样性,有助于提高异常检测模型的性能。
-
公开(公告)号:CN118447880A
公开(公告)日:2024-08-06
申请号:CN202410640457.2
申请日:2024-05-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提供了一种基于多特征注意力融合的语音情感识别方法及系统,包括:基于获取的待识别语音信号,通过预处理获得语音信号的语谱图和梅尔频率倒谱系数;基于所述语谱图,通过时频特征提取获得语谱图特征;基于所述梅尔频率倒谱系数,利用预先训练的神经网络模型进行特征提取,获得梅尔频率倒谱系数特征;基于待识别语音信号,利用自动语音识别的预训练模型进行特征提取,获得W2E特征;分别将语谱图特征和W2E特征以及梅尔频率倒谱系数特征和W2E特征进行特征融合,获得第一融合特征和第二融合特征;基于所述第一融合特征和第二融合特征,通过全局融合获得最终的融合特征;基于获得的融合特征,利用预先训练的情感分类器,获得情感分类结果。
-
公开(公告)号:CN117934914A
公开(公告)日:2024-04-26
申请号:CN202311830648.7
申请日:2023-12-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/764 , G06V10/82 , G06N3/0475 , G06N3/094 , G06N3/084 , G06N3/09 , G06N3/096
Abstract: 本发明公开一种基于数据增强和最大绝对差异的对抗样本生成方法及系统,该方法包括:预处理原始图像,得到被攻击图像;创建初始扰动图像,开始迭代;基于被攻击图像,获得并调整多张局部图像,结合扰动图像,对被攻击图像和多张局部图像进行数据增强处理;将数据增强处理后的图像输入至分类网络模型中,计算全局特征与多个局部特征之间的最大绝对差异损失值,并计算分类器损失值,综合得到总损失值,通过反向传播获取损失函数梯度信息;计算得到最终的图像梯度信息,生成并更新扰动图像;判断是否达到最大迭代次数,若是,则对被攻击图像叠加更新后的扰动图像,生成对抗样本;反之则迭代更新扰动图像。本发明能够有效提高生成对抗样本的迁移率。
-
公开(公告)号:CN117877521A
公开(公告)日:2024-04-12
申请号:CN202410021090.6
申请日:2024-01-04
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提出了基于数据增强的无监督机械声音异常识别方法及系统,通过对采集的正常音频数据提取对数梅尔谱图,并对对数梅尔谱图进行数据增强处理,用于识别模型的训练,增强了识别模型对于复杂故障模式的识别能力,并提高了其对于未知故障类型的泛化能力;在识别模型中通过添加自注意力机制捕捉长距离依赖,能够关注到输入特征图中相距较远的区域间的关系,提高特征提取和特征表达能力。
-
公开(公告)号:CN117219120A
公开(公告)日:2023-12-12
申请号:CN202311000370.0
申请日:2023-08-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明公开一种基于时频域音频增强的机械设备异常检测方法及系统,包括:获取正常运行音频信号,提取幅度谱和相位谱,对幅度谱进行增强处理,将增强后的幅度谱与相位谱合并得到正常运行音频增强信号;对正常运行音频增强信号提取频谱特征,对卷积自编码器网络进行训练;对待测运行音频信号进行增强处理后得到待测运行音频增强信号,根据待测运行音频增强信号采用训练后的卷积自编码器网络得到待测运行音频重构信号,根据待测运行音频重构信号与待测运行音频增强信号间的重构误差得到异常检测结果。通过对音频信号进行增强,使得采集到的机械设备运行音频更加接近于机械设备本身,更利于异常声音检测而不会发生误判。
-
公开(公告)号:CN114896403B
公开(公告)日:2025-04-18
申请号:CN202210565193.X
申请日:2022-05-23
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智能科技有限公司
IPC: G06F16/353 , G06F40/284 , G06F40/30 , G06F18/214 , G06F18/2415 , G06F18/2431 , G06F18/25 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及数据处理技术领域,公开了基于门控机制的企业二级行业分类方法及系统,包括:获取待分类的企业信息;将待分类的企业信息,输入到训练后的企业二级行业分类模型中,输出企业二级行业分类结果;其中,训练后的企业二级行业分类模型,其工作原理是:获取待分类企业信息的单词特征向量,再从单词特征向量中提取企业信息的上下文向量;然后,将单词特征向量与上下文向量进行拼接;对拼接后的向量分别提取上下文特征和局部显著特征;对提取的两种特征进行加权融合,将融合后的特征进行分类,得到最终分类结果。本发明减少了传统二级行业分类中的人力开支,缩短了企业行业分类的系统执行时间,且分类结果准确、系统安全。
-
公开(公告)号:CN119339739A
公开(公告)日:2025-01-21
申请号:CN202411394677.8
申请日:2024-10-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提供了一种基于域泛化的机械设备无监督异常声音检测方法及系统,本发明通过构建基于全局上下文的SE‑ECA融合注意力机制模块,分别构建MFCC分支网络架构和Log‑Mel分支网络架构,将所述模块添加至各分支网络架构中,分别对MFCC谱图特征和Log‑Mel谱图特征进行音频特征提取;将两个分支网络架构提取的音频特征嵌入在通道维度上进行合并,形成综合特征向量,对综合特征向量进行分类;构建并训练异常检测模型,异常检测模型利用高斯混合模型计算全局异常分数,在利用局部异常因子检测局部异常,再进行加权平均,本发明可以自动学习正常声音特征并检测异常,提升设备的异常检测性能。
-
公开(公告)号:CN115171710B
公开(公告)日:2024-10-29
申请号:CN202210799728.X
申请日:2022-07-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G10L21/007 , G10L21/0224 , G10L21/0232 , G10L19/02 , G10L25/63 , G06N3/045 , G06N3/0464 , G06N3/094 , G06N3/0475 , G06N3/084 , G10L25/30
Abstract: 本发明属于语音信号处理的语音增强技术领域,提供了一种基于多角度判别的生成对抗网络的语音增强方法及系统。该方法包括,获取带噪声语音信号;基于带噪声语音信号,采用训练好的生成对抗网络,得到增强后的语音信号;其中,所述生成对抗网络包括一个生成器和四个判别器。本发明的多角度判别包括:增强后语音信号、干净语音与情绪语音之间的差异;同时添加从频域判别学习增强后语音信号、干净语音与情绪语音之间的频域差异。本发明从不同语音信号的语音成分进行判别,以及语音的时域频域角度,能够从不同角度充分学习语音成分,为生成器提供足够多的反馈信息,可以有效改善语音失真,提高增强后语音的语音质量。
-
公开(公告)号:CN116840777A
公开(公告)日:2023-10-03
申请号:CN202310699258.4
申请日:2023-06-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于目标跟踪定位领域,提供了一种自适应平方根无迹卡尔曼滤波空间偏差配准方法和系统,初始化待测目标传感器,构建传感器量测方程和目标状态方程;自适应求取协方差矩阵的平方根,计算采样点和权值;利用自适应无迹卡尔曼滤波算法,基于k‑1时刻状态均值和协方差矩阵,估计k时刻的状态、量测与其他滤波中间参数;根据系统当前时刻是否因噪声等干扰造成异常量测数据,自适应校准状态方程中的可调参数;利用自适应无迹卡尔曼滤波算法和自适应聚类算法,根据k‑1时刻的偏差估计值及其误差协方差矩阵与预测的量测数据,构造偏差伪测量方程,对偏差值进行估计和补偿;重复上述步骤,形成闭环循环操作,进行迭代运算,直至完成所有传感器的配准。
-
公开(公告)号:CN114664318B
公开(公告)日:2025-05-09
申请号:CN202210301250.3
申请日:2022-03-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G10L21/0208 , G10L25/30 , G06N3/0475 , G06N3/0442 , G06N3/047 , G06N3/0464 , G06N3/094
Abstract: 本发明公开了基于生成对抗网络的语音增强方法及系统,包括:获取带噪声语音信号;将带噪声语音信号,输入到训练后的生成对抗网络中,输出增强后的语音信号;其中,所述生成对抗网络,包括两个生成器和两个判别器;所述生成对抗网络,训练过程中通过对两个生成器与两个判别器的相互博弈,提升生成器逼近目标信号的能力。本发明充分考虑了语音信号的时序关系,改进了先前的生成器与判别器的全卷积的设计,生成器中添加使用多头注意力机制,并将多生成器多阶段增强与注意力机制相结合,充分利用了多头注意力机制与生成对抗网络博弈思想。本方法能够是增强后的语音具有更高的质量与可懂度。
-
-
-
-
-
-
-
-
-