-
公开(公告)号:CN114038517A
公开(公告)日:2022-02-11
申请号:CN202110983302.5
申请日:2021-08-25
Applicant: 暨南大学
Abstract: 本发明涉及一种基于对比学习的自监督图神经网络预训练方法,步骤为:对公开数据库的化合物分子进行预处理,筛选出有机分子;对筛选出的有机分子进行结构分解并提取,将所得的子结构作为标识符,并构建子结构的语料库;将分解后的子结构看作超级节点并构建相应的子图数据,该子图数据与原分子图数据构成正样本对,随机选出若干个子图数据与原分子图数据组成负样本对;构建基于注意力机制的图卷积神经网络、基于多层次的门控循环单元和多层感知机模块,组成自监督学习模型;将所有正负样本对数据输入自监督学习模型进行预训练并保存,便于下游任务的微调。解决对缺乏标注的药物分子的场景时,进行深度学习模型训练所产生的泛化性能不足的问题。
-
公开(公告)号:CN114038517B
公开(公告)日:2024-11-15
申请号:CN202110983302.5
申请日:2021-08-25
Applicant: 暨南大学
IPC: G16C20/70 , G16C20/20 , G06N3/042 , G06N3/0895 , G06N3/0464 , G06N3/0442
Abstract: 本发明涉及一种基于对比学习的自监督图神经网络预训练方法,步骤为:对公开数据库的化合物分子进行预处理,筛选出有机分子;对筛选出的有机分子进行结构分解并提取,将所得的子结构作为标识符,并构建子结构的语料库;将分解后的子结构看作超级节点并构建相应的子图数据,该子图数据与原分子图数据构成正样本对,随机选出若干个子图数据与原分子图数据组成负样本对;构建基于注意力机制的图卷积神经网络、基于多层次的门控循环单元和多层感知机模块,组成自监督学习模型;将所有正负样本对数据输入自监督学习模型进行预训练并保存,便于下游任务的微调。解决对缺乏标注的药物分子的场景时,进行深度学习模型训练所产生的泛化性能不足的问题。
-
公开(公告)号:CN115101145B
公开(公告)日:2024-09-17
申请号:CN202210737270.5
申请日:2022-06-27
Applicant: 暨南大学
IPC: G16C20/50 , G06F18/241 , G06N3/0464 , G06N3/084 , G06N3/045 , G06N3/042 , G06N3/0895 , G16C20/70
Abstract: 本发明公开了一种基于自适应元学习的药物虚拟筛选方法及系统,包括以下步骤:S1、对公开数据库的药物分子数据进行预处理获得分子图数据并划分T个数据集;S2、构建基于元学习器的多任务神经网络模型;S3、利用上述数据集对神经网络模型进行预训练,得到药物虚拟筛选模型;S4、输入任务目标的数据到上述药物虚拟筛选模型,对任务的权重进行调整,添加目标任务相关的预测层,得到与目标任务强相关的药物虚拟筛选模型。本方法与基于深度学习的药物筛选方法相比,利用元学习器对模型进行任务权重上的调整,通过添加目标任务相关的预测层,能够自适应调整模型,使药物虚拟筛选模型达成更好的泛化性能,能够筛选出具有足够活性且符合要求的药物分子。
-
公开(公告)号:CN115101145A
公开(公告)日:2022-09-23
申请号:CN202210737270.5
申请日:2022-06-27
Applicant: 暨南大学
Abstract: 本发明公开了一种基于自适应元学习的药物虚拟筛选方法及系统,包括以下步骤:S1、对公开数据库的药物分子数据进行预处理获得分子图数据并划分T个数据集;S2、构建基于元学习器的多任务神经网络模型;S3、利用上述数据集对神经网络模型进行预训练,得到药物虚拟筛选模型;S4、输入任务目标的数据到上述药物虚拟筛选模型,对任务的权重进行调整,添加目标任务相关的预测层,得到与目标任务强相关的药物虚拟筛选模型。本方法与基于深度学习的药物筛选方法相比,利用元学习器对模型进行任务权重上的调整,通过添加目标任务相关的预测层,能够自适应调整模型,使药物虚拟筛选模型达成更好的泛化性能,能够筛选出具有足够活性且符合要求的药物分子。
-
-
-