一种物流供应链品控缺陷检测方法及系统

    公开(公告)号:CN117876799B

    公开(公告)日:2024-05-28

    申请号:CN202410269658.6

    申请日:2024-03-11

    Applicant: 暨南大学

    Abstract: 本发明公开了一种物流供应链品控缺陷检测方法及系统,其中方法包括:采集有关物流供应链品控的训练数据,并提取训练数据的缺陷特征;基于特征缺陷,构建混合检测模型;优化检测模型,得到最终模型;利用最终模型,完成物流供应链上的品控缺陷检测。本发明通过融合形变检测和穿透性破损检测两个神经网络模块,实现了对物流供应链纸箱包装的综合检测。本发明能够同时兼顾形变检测和穿透性破损检测,解决了目前方法只能单一处理这两个方面的问题。这将会进一步提高物流供应链纸箱包裹运输过程中的安全性和效率,为物流行业带来更大的便利和效益。

    一种高效的车联网信任查询与评估系统及方法

    公开(公告)号:CN116321069A

    公开(公告)日:2023-06-23

    申请号:CN202310117829.9

    申请日:2023-02-15

    Abstract: 本发明公开了一种高效的车联网信任查询与评估方法及系统,在该系统中,本发明首先利用区块链技术分布式存储车辆信任数据,实现了数据的可信存储;接着提出两种缓存策略并结合智能合约,分别设计信任值查询算法,实现了信任值的低时延查询;最后基于所提查询算法,以车辆历史信任值、车辆位置以及消息新鲜度作为参考因素,设计紧急消息信任评估算法,实现了低时延且高精准的信任评估。本发明提出的系统与现有的车联网信任查询与评估系统相比,在消息信任评估时延和消息信任评估准确率之间达到了更好的平衡,更加适用于实际的场景。

    一种基于描述熵的大数据移动软件相似性智能检测方法

    公开(公告)号:CN110210224B

    公开(公告)日:2023-01-31

    申请号:CN201910424145.7

    申请日:2019-05-21

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于描述熵的大数据移动软件相似性智能检测方法,包括以下步骤:获取移动软件路径,按照路径读取移动软件的文件;对移动软件的文件进行初步逆向工程反编译,获取每个移动软件的函数特征;通过函数特征中的描述熵,统计每个移动软件描述熵的分布;将每个移动软件描述熵进一步整合,通过整合后,移动软件之间的描述熵分布情况进行比较,进行相似性分数计算,得到移动软件之间的相似性分数;输出所有移动软件的相似性分数,得到移动软件相似性结果;本发明通过反编译获取移动软件源代码,获取函数压缩编码再获取描述熵,利用描述熵作为表示一个对象的信息量,用于移动软件的相似性检测,大大提高软件相似性智能计算速度。

    一种基于自适应元学习的药物虚拟筛选方法

    公开(公告)号:CN115101145A

    公开(公告)日:2022-09-23

    申请号:CN202210737270.5

    申请日:2022-06-27

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于自适应元学习的药物虚拟筛选方法及系统,包括以下步骤:S1、对公开数据库的药物分子数据进行预处理获得分子图数据并划分T个数据集;S2、构建基于元学习器的多任务神经网络模型;S3、利用上述数据集对神经网络模型进行预训练,得到药物虚拟筛选模型;S4、输入任务目标的数据到上述药物虚拟筛选模型,对任务的权重进行调整,添加目标任务相关的预测层,得到与目标任务强相关的药物虚拟筛选模型。本方法与基于深度学习的药物筛选方法相比,利用元学习器对模型进行任务权重上的调整,通过添加目标任务相关的预测层,能够自适应调整模型,使药物虚拟筛选模型达成更好的泛化性能,能够筛选出具有足够活性且符合要求的药物分子。

Patent Agency Ranking