-
公开(公告)号:CN117540104A
公开(公告)日:2024-02-09
申请号:CN202311762184.0
申请日:2023-12-20
Applicant: 暨南大学
IPC: G06F16/9535 , G06N3/0895 , G06N5/022 , G06Q50/20 , G06F16/906
Abstract: 本发明公开了一种基于图神经网络的学习群体差异评价方法与系统,包括:获取学习者做题的历史交互信息,对历史交互信息进行处理,得到知识点群体和知识点群体构成的潜在交互序列;根据知识点群体和知识点群体构成的潜在交互序列对学习者群体进行聚类,得到学习者群体;计算所述学习者群体之间的差异,得到群体差异量化结果;将群体差异量化结果输入循环神经网络模块进行训练,得到训练完毕的学习群体差异评价模型;将学习者做题的交互信息输入至模型,得到学习者学习能力评估结果。本申请与传统技术相比,能实现数据驱动的群体动态分组,精准评估群体学习情况,输出不同层次学习者群体的学习能力评价结果,以便制定更有效的后续教育计划。
-
公开(公告)号:CN119991375A
公开(公告)日:2025-05-13
申请号:CN202510436954.5
申请日:2025-04-09
Applicant: 暨南大学
IPC: G06Q50/20 , G06N3/0442 , G06F18/10 , G06F18/214 , G06F18/2415 , G06F18/25
Abstract: 本发明公开了一种基于长短期记忆神经网络的教育资源多样化推荐方法及系统,涉及教育资源推荐技术领域,其中方法包括:S1.获取学习者的历史学习资源信息,并将学习者进行划分;S2.基于划分的结果,进行学习者表征增强与知识点掌握建模;S3.基于学习者的知识点掌握程度,生成候选教育资源列表;S4.基于候选教育资源列表,计算教育资源相关性与多样性得分;S5.融合教育资源相关性与多样性得分,按最终分数从高到低为学习者推荐指定数量的教育资源。本发明提出了序列增强模块,通过结合不活跃学习者的历史学习行为和积极学习者的丰富历史数据,对不活跃学习者的学习表示进行增强。
-
公开(公告)号:CN117540104B
公开(公告)日:2024-08-02
申请号:CN202311762184.0
申请日:2023-12-20
Applicant: 暨南大学
IPC: G06F16/9535 , G06N3/0895 , G06N5/022 , G06Q50/20 , G06F16/906
Abstract: 本发明公开了一种基于图神经网络的学习群体差异评价方法与系统,包括:获取学习者做题的历史交互信息,对历史交互信息进行处理,得到知识点群体和知识点群体构成的潜在交互序列;根据知识点群体和知识点群体构成的潜在交互序列对学习者群体进行聚类,得到学习者群体;计算所述学习者群体之间的差异,得到群体差异量化结果;将群体差异量化结果输入循环神经网络模块进行训练,得到训练完毕的学习群体差异评价模型;将学习者做题的交互信息输入至模型,得到学习者学习能力评估结果。本申请与传统技术相比,能实现数据驱动的群体动态分组,精准评估群体学习情况,输出不同层次学习者群体的学习能力评价结果,以便制定更有效的后续教育计划。
-
-