-
公开(公告)号:CN118194357B
公开(公告)日:2024-08-09
申请号:CN202410605553.3
申请日:2024-05-16
Applicant: 暨南大学 , 深圳市方直科技股份有限公司 , 深圳市木愚科技有限公司
Abstract: 本发明提出了一种基于扩散去噪模型的隐私数据发布方法,包括:构建教育数据集,其中,所述教育数据集包括:隐私属性集和非隐私属性集;基于隐私预算,对所述隐私属性集进行PRAM预扰动;基于PRAM预扰动后的数据对预设的数据生成模型进行训练;基于训练后的数据生成模型进行采样,生成包含特定数量的数据记录作为合成数据集。本发明在可以在满足本地差分隐私定义的情况下,生成数据效用良好的教育类数据集,适用于各类教育数据应用场景。与一般的基于深度生成式模型的隐私数据发布方法相比,该方案可以实现更好的隐私‑效用权衡。
-
公开(公告)号:CN118035568B
公开(公告)日:2024-07-05
申请号:CN202410437158.9
申请日:2024-04-12
Applicant: 暨南大学
IPC: G06F16/9535 , G06N3/0499 , G06Q50/20
Abstract: 本发明涉及习题推荐技术领域,特别是涉及一种感知知识掌握程度的教育习题智能推荐方法,包括:获取第一预设时间内用户的历史答题信息;将历史答题信息输入预设的感知预测模型中,输出第二预设时间内用户的推荐练习习题,其中,感知预测模型通过数据集训练,数据集包含习题序列,习题序列为第三预设时间内用户的历史答题信息按时间先后顺序组成,第三预设时间大于且不包含第一预设时间;感知预测模型包括感知模块和预测模块,感知模块用于对数据集中的习题序列进行处理,获取输出向量;预测模块用于对输出向量进行处理,输出推荐结果。本发明能够为用户进行精准、有效的习题推荐。
-
公开(公告)号:CN117540104A
公开(公告)日:2024-02-09
申请号:CN202311762184.0
申请日:2023-12-20
Applicant: 暨南大学
IPC: G06F16/9535 , G06N3/0895 , G06N5/022 , G06Q50/20 , G06F16/906
Abstract: 本发明公开了一种基于图神经网络的学习群体差异评价方法与系统,包括:获取学习者做题的历史交互信息,对历史交互信息进行处理,得到知识点群体和知识点群体构成的潜在交互序列;根据知识点群体和知识点群体构成的潜在交互序列对学习者群体进行聚类,得到学习者群体;计算所述学习者群体之间的差异,得到群体差异量化结果;将群体差异量化结果输入循环神经网络模块进行训练,得到训练完毕的学习群体差异评价模型;将学习者做题的交互信息输入至模型,得到学习者学习能力评估结果。本申请与传统技术相比,能实现数据驱动的群体动态分组,精准评估群体学习情况,输出不同层次学习者群体的学习能力评价结果,以便制定更有效的后续教育计划。
-
公开(公告)号:CN117540104B
公开(公告)日:2024-08-02
申请号:CN202311762184.0
申请日:2023-12-20
Applicant: 暨南大学
IPC: G06F16/9535 , G06N3/0895 , G06N5/022 , G06Q50/20 , G06F16/906
Abstract: 本发明公开了一种基于图神经网络的学习群体差异评价方法与系统,包括:获取学习者做题的历史交互信息,对历史交互信息进行处理,得到知识点群体和知识点群体构成的潜在交互序列;根据知识点群体和知识点群体构成的潜在交互序列对学习者群体进行聚类,得到学习者群体;计算所述学习者群体之间的差异,得到群体差异量化结果;将群体差异量化结果输入循环神经网络模块进行训练,得到训练完毕的学习群体差异评价模型;将学习者做题的交互信息输入至模型,得到学习者学习能力评估结果。本申请与传统技术相比,能实现数据驱动的群体动态分组,精准评估群体学习情况,输出不同层次学习者群体的学习能力评价结果,以便制定更有效的后续教育计划。
-
公开(公告)号:CN118194357A
公开(公告)日:2024-06-14
申请号:CN202410605553.3
申请日:2024-05-16
Applicant: 暨南大学 , 深圳市方直科技股份有限公司 , 深圳市木愚科技有限公司
Abstract: 本发明提出了一种基于扩散去噪模型的隐私数据发布方法,包括:构建教育数据集,其中,所述教育数据集包括:隐私属性集和非隐私属性集;基于隐私预算,对所述隐私属性集进行PRAM预扰动;基于PRAM预扰动后的数据对预设的数据生成模型进行训练;基于训练后的数据生成模型进行采样,生成包含特定数量的数据记录作为合成数据集。本发明在可以在满足本地差分隐私定义的情况下,生成数据效用良好的教育类数据集,适用于各类教育数据应用场景。与一般的基于深度生成式模型的隐私数据发布方法相比,该方案可以实现更好的隐私‑效用权衡。
-
公开(公告)号:CN118035568A
公开(公告)日:2024-05-14
申请号:CN202410437158.9
申请日:2024-04-12
Applicant: 暨南大学
IPC: G06F16/9535 , G06N3/0499 , G06Q50/20
Abstract: 本发明涉及习题推荐技术领域,特别是涉及一种感知知识掌握程度的教育习题智能推荐方法,包括:获取第一预设时间内用户的历史答题信息;将历史答题信息输入预设的感知预测模型中,输出第二预设时间内用户的推荐练习习题,其中,感知预测模型通过数据集训练,数据集包含习题序列,习题序列为第三预设时间内用户的历史答题信息按时间先后顺序组成,第三预设时间大于且不包含第一预设时间;感知预测模型包括感知模块和预测模块,感知模块用于对数据集中的习题序列进行处理,获取输出向量;预测模块用于对输出向量进行处理,输出推荐结果。本发明能够为用户进行精准、有效的习题推荐。
-
-
-
-
-