-
公开(公告)号:CN116860028B
公开(公告)日:2024-12-13
申请号:CN202310998837.9
申请日:2023-08-08
Applicant: 江苏大学
IPC: G05D16/20
Abstract: 本发明提供了一种超高精度气动力伺服系统及其控制参数智能优化方法,所述气动力伺服系统主要由一个双作用气浮无摩擦气缸和一个压力控制系统组成;采用所述气浮无摩擦气缸能够去除摩擦对输出力控制精度的影响;所述压力控制系统由基于新型改进粒子群算法优化的模糊PI控制器实现对压力的超高精度控制;所述新型改进粒子群算法融合了高斯变异策略和模糊控制理论;利用新型改进粒子群算法得到优化的模糊PI控制参数并基于该参数执行气浮无摩擦气缸腔体的超高精度压力控制,可实现该系统超高精度的力输出;本发明所提出的气动力伺服系统能够应用在对力控制精度要求很高的场合,扩大了气动力伺服系统的应用范围。
-
公开(公告)号:CN118049416B
公开(公告)日:2024-09-27
申请号:CN202410235770.8
申请日:2024-03-01
Applicant: 江苏大学
Abstract: 本发明提供了一种能产生电涡流阻尼且能自散热、无线充电的无摩擦气动执行器,主要包括活塞杆、气浮活塞、缸筒、电池及无线充电模块;活塞杆端具有延伸至活塞内部的线圈骨架结构,线圈设于线圈骨架结构上,所述线圈与集成在活塞端盖上的电池电连接;且线圈骨架结构上具有与出气通道连通的散热结构。当向随气浮活塞运动的线圈通电后,会产生电涡流阻尼力,且气浮活塞中的工作气体通过散热结构排出,同时带走线圈的热量。当所述气动执行器停机状态下,通过无线充电模块为电池充电。本发明通过置于气浮活塞内的线圈,在工作中产生电涡流阻尼力,以改善气浮气动执行器的位置控制精度;同时设计巧妙的排气通道缓解线圈的发热问题,有效提高使用寿命。
-
公开(公告)号:CN118049416A
公开(公告)日:2024-05-17
申请号:CN202410235770.8
申请日:2024-03-01
Applicant: 江苏大学
Abstract: 本发明提供了一种能产生电涡流阻尼且能自散热、无线充电的无摩擦气动执行器,主要包括活塞杆、气浮活塞、缸筒、电池及无线充电模块;活塞杆端具有延伸至活塞内部的线圈骨架结构,线圈设于线圈骨架结构上,所述线圈与集成在活塞端盖上的电池电连接;且线圈骨架结构上具有与出气通道连通的散热结构。当向随气浮活塞运动的线圈通电后,会产生电涡流阻尼力,且气浮活塞中的工作气体通过散热结构排出,同时带走线圈的热量。当所述气动执行器停机状态下,通过无线充电模块为电池充电。本发明通过置于气浮活塞内的线圈,在工作中产生电涡流阻尼力,以改善气浮气动执行器的位置控制精度;同时设计巧妙的排气通道缓解线圈的发热问题,有效提高使用寿命。
-
公开(公告)号:CN116860028A
公开(公告)日:2023-10-10
申请号:CN202310998837.9
申请日:2023-08-08
Applicant: 江苏大学
IPC: G05D16/20
Abstract: 本发明提供了一种超高精度气动力伺服系统及其控制参数智能优化方法,所述气动力伺服系统主要由一个双作用气浮无摩擦气缸和一个压力控制系统组成;采用所述气浮无摩擦气缸能够去除摩擦对输出力控制精度的影响;所述压力控制系统由基于新型改进粒子群算法优化的模糊PI控制器实现对压力的超高精度控制;所述新型改进粒子群算法融合了高斯变异策略和模糊控制理论;利用新型改进粒子群算法得到优化的模糊PI控制参数并基于该参数执行气浮无摩擦气缸腔体的超高精度压力控制,可实现该系统超高精度的力输出;本发明所提出的气动力伺服系统能够应用在对力控制精度要求很高的场合,扩大了气动力伺服系统的应用范围。
-
-
-