一种基于CNN-SVDD的引风机故障识别方法

    公开(公告)号:CN111753889B

    公开(公告)日:2022-04-12

    申请号:CN202010526996.5

    申请日:2020-06-11

    Abstract: 本发明涉及一种基于CNN‑SVDD的引风机故障识别方法,包括:步骤1:采集足量训练数据,进行数据预处理;步骤2:利用预处理后的训练数据构建CNN‑SVDD模型,利用CNN算法对时间序列数据进行降维,然后通过SVDD算法进行数据单分类;步骤3:采集足量实时数据,用基于已构建的CNN‑SVDD模型对实时数据对应的引风机故障进行识别。本发明的有益效果是:本发明利用深度学习先进行特征提取,大量减少特征维度后,再使用SVDD进行单分类分析,这样可以节省SVDD的时间和内存开销。另外由于引风机数据具有时间序列特性,可以充分利用时间序列数据时间维度上的局部相关性,使用一维卷积网络减少学习参数,进一步减少计算开销。

    一种基于CNN-SVDD的引风机故障识别方法

    公开(公告)号:CN111753889A

    公开(公告)日:2020-10-09

    申请号:CN202010526996.5

    申请日:2020-06-11

    Abstract: 本发明涉及一种基于CNN-SVDD的引风机故障识别方法,包括:步骤1:采集足量训练数据,进行数据预处理;步骤2:利用预处理后的训练数据构建CNN-SVDD模型,利用CNN算法对时间序列数据进行降维,然后通过SVDD算法进行数据单分类;步骤3:采集足量实时数据,用基于已构建的CNN-SVDD模型对实时数据对应的引风机故障进行识别。本发明的有益效果是:本发明利用深度学习先进行特征提取,大量减少特征维度后,再使用SVDD进行单分类分析,这样可以节省SVDD的时间和内存开销。另外由于引风机数据具有时间序列特性,可以充分利用时间序列数据时间维度上的局部相关性,使用一维卷积网络减少学习参数,进一步减少计算开销。

Patent Agency Ranking