一种基于生成对抗网络的异源图像迁移方法

    公开(公告)号:CN113283444A

    公开(公告)日:2021-08-20

    申请号:CN202110340836.6

    申请日:2021-03-30

    Abstract: 本发明公开了一种基于生成对抗网络的异源图像迁移技术,属于图像生成技术领域。其具体步骤为:S1红外与可见光图像数据集的选取与制作;S2基于所提出生成对抗网络架构STVGAN,对网络模型循环训练。S3减少网络模型中总损失函数的值,得到训练好的生成器网络;S4通过训练好的生成器网络实现从红外图像到可见光图像的迁移。本发明是一种半监督学习的异源图像迁移算法,是半监督学习方法首次应用在异源图像迁移领域,相较于传统监督方法,仅需要部分配对的数据就可以达到更好的图像迁移效果。

    一种基于生成对抗网络的异源图像迁移方法

    公开(公告)号:CN113283444B

    公开(公告)日:2022-07-15

    申请号:CN202110340836.6

    申请日:2021-03-30

    Abstract: 本发明公开了一种基于生成对抗网络的异源图像迁移技术,属于图像生成技术领域。其具体步骤为:S1红外与可见光图像数据集的选取与制作;S2基于所提出生成对抗网络架构STVGAN,对网络模型循环训练。S3减少网络模型中总损失函数的值,得到训练好的生成器网络;S4通过训练好的生成器网络实现从红外图像到可见光图像的迁移。本发明是一种半监督学习的异源图像迁移算法,是半监督学习方法首次应用在异源图像迁移领域,相较于传统监督方法,仅需要部分配对的数据就可以达到更好的图像迁移效果。

Patent Agency Ranking