-
公开(公告)号:CN114997299B
公开(公告)日:2024-04-16
申请号:CN202210584150.6
申请日:2022-05-27
Applicant: 电子科技大学
IPC: G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/09
Abstract: 本发明属于神经网络和射频指纹识别技术领域,具体来说是涉及一种资源受限环境下的射频指纹识别方法。本发明包括:将原始采样的I/Q信号进行数据预处理,得到训练任务集;构建资源受限下的射频指纹识别模型——DSCNet;将训练任务集输入到模型当中进行训练,然后对得到的模型进行量化处理;将识别任务输入到量化后的模型当中,得到射频指纹识别结果。本发明在资源受限的环境下具有较好的识别精度,同时模型的训练和推理速度表现较好,可以在资源不足的设备中进行射频指纹识别任务。
-
公开(公告)号:CN114896887A
公开(公告)日:2022-08-12
申请号:CN202210549046.3
申请日:2022-05-20
Applicant: 电子科技大学
Abstract: 本发明属于神经网络和射频指纹识别技术领域,具体来说是涉及一种基于深度学习的用频设备射频指纹识别方法。本发明包括:采集相应的射频信号并进行解析,以I/Q数据的形式进行存储;对I/Q数据进行基于调制方式的整形处理预处理,构建训练/测试数据集;构建RCAN‑RFF深度网络,并对其进行训练;将测试数据输入RCAN‑RFF深度网络,得到用频设备射频指纹识别结果。该发明在高强度电磁噪声环境下,算法模型在识别准确率以及收敛速度方面综合表现最好,对复杂电磁环境中信噪比变化具有鲁棒性,大大减少了网络的训练复杂度。
-
公开(公告)号:CN114896887B
公开(公告)日:2023-04-25
申请号:CN202210549046.3
申请日:2022-05-20
Applicant: 电子科技大学
IPC: G06F30/27 , G06F18/214 , G06F18/241 , G06F18/24 , G06N3/0464 , G06N3/084 , H04L27/26
Abstract: 本发明属于神经网络和射频指纹识别技术领域,具体来说是涉及一种基于深度学习的用频设备射频指纹识别方法。本发明包括:采集相应的射频信号并进行解析,以I/Q数据的形式进行存储;对I/Q数据进行基于调制方式的整形处理预处理,构建训练/测试数据集;构建RCAN‑RFF深度网络,并对其进行训练;将测试数据输入RCAN‑RFF深度网络,得到用频设备射频指纹识别结果。该发明在高强度电磁噪声环境下,算法模型在识别准确率以及收敛速度方面综合表现最好,对复杂电磁环境中信噪比变化具有鲁棒性,大大减少了网络的训练复杂度。
-
公开(公告)号:CN114997299A
公开(公告)日:2022-09-02
申请号:CN202210584150.6
申请日:2022-05-27
Applicant: 电子科技大学
Abstract: 本发明属于神经网络和射频指纹识别技术领域,具体来说是涉及一种资源受限环境下的射频指纹识别方法。本发明包括:将原始采样的I/Q信号进行数据预处理,得到训练任务集;构建资源受限下的射频指纹识别模型——DSCNet;将训练任务集输入到模型当中进行训练,然后对得到的模型进行量化处理;将识别任务输入到量化后的模型当中,得到射频指纹识别结果。本发明在资源受限的环境下具有较好的识别精度,同时模型的训练和推理速度表现较好,可以在资源不足的设备中进行射频指纹识别任务。
-
公开(公告)号:CN114943253A
公开(公告)日:2022-08-26
申请号:CN202210549015.8
申请日:2022-05-20
Applicant: 电子科技大学
Abstract: 本发明属于神经网络和目标识别技术领域,具体来说是涉及一种基于元学习模型的射频指纹小样本识别方法。本发明包括:将原始I/Q信号作为数据集,制作训练任务样本集;构建元学习模型——匹配网络模型;将训练任务集输入匹配网络模型,从I/Q信号中提取射频指纹特征,度量样本之间的相似度,对模型进行训练;将识别任务输入到训练好的元学习模型中,输出模型的识别结果。本发明在面临射频指纹小样本数据集时,具有较好的识别精度,并避免了因数据量少所带来的模型过拟合问题。
-
-
-
-