一种基于深度学习的目标检测流程自优化方法

    公开(公告)号:CN114266953B

    公开(公告)日:2024-06-11

    申请号:CN202111601306.9

    申请日:2021-12-24

    Applicant: 福州大学

    Abstract: 本发明提出一种基于深度学习的目标检测流程自优化方法,包括以下步骤:步骤S1:定义目标检测的标准流程以及目标检测流程可能用到的模块,确定可通过神经网络模块来优化的目标检测流程自优化空间;步骤S2:确定与自优化空间相关的限制条件以及所需参数配置,配置目标检测流程的自优化限制参数;步骤S3:将步骤S1的自优化空间与步骤S2的限制参数送入流程优化器,产生优化后的模型组及其相关配置;步骤S4:对步骤S3得到的模型组进行标准化完全训练,统计效果并输出最终模型组;本发明用于计算机视觉目标检测训练,能够有效的降低计算机视觉目标检测训练所需的人工时间成本,提升目标检测模型的综合能力。

    一种基于YOLOv3与文本识别的美式车牌识别方法

    公开(公告)号:CN112232371B

    公开(公告)日:2022-06-10

    申请号:CN202010978381.6

    申请日:2020-09-17

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于YOLOv3与文本识别的美式车牌识别方法,包括步骤S1:采集美式车牌中各个州的车牌的图像数据,构成美式车牌图像集;步骤S2:对下载好的图像进行人工标注,生成xml文件,以符合YOLOv3神经网络模型训练的要求;步骤S3:对步骤S2中处理好的数据进行若干数据增强,用以提高图像质量,利于之后的训练与识别;步骤S4:训练YOLOv3神经网络模型,并用训练好的权重检测出车牌的特征区域;步骤S5:车牌特殊字符作为新样本加入deep‑text文本识别工具训练,将检测出的车牌特征区域通过训练好的文本识别工具提取出对应的字符信息。本发明提出方法的准确率高,时效性好,对于美式的车牌识别具有实际应用意义。

    一种基于深度学习的目标检测流程自优化方法

    公开(公告)号:CN114266953A

    公开(公告)日:2022-04-01

    申请号:CN202111601306.9

    申请日:2021-12-24

    Applicant: 福州大学

    Abstract: 本发明提出一种基于深度学习的目标检测流程自优化方法,包括以下步骤:步骤S1:定义目标检测的标准流程以及目标检测流程可能用到的模块,确定可通过神经网络模块来优化的目标检测流程自优化空间;步骤S2:确定与自优化空间相关的限制条件以及所需参数配置,配置目标检测流程的自优化限制参数;步骤S3:将步骤S1的自优化空间与步骤S2的限制参数送入流程优化器,产生优化后的模型组及其相关配置;步骤S4:对步骤S3得到的模型组进行标准化完全训练,统计效果并输出最终模型组;本发明用于计算机视觉目标检测训练,能够有效的降低计算机视觉目标检测训练所需的人工时间成本,提升目标检测模型的综合能力。

    一种基于人脸识别的人物身份跟踪方法及系统

    公开(公告)号:CN112149557A

    公开(公告)日:2020-12-29

    申请号:CN202011000236.7

    申请日:2020-09-22

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于人脸识别的人物身份跟踪方法及系统,包括步骤:采用人脸数据集训练神经网络;采集待识别身份人物的人脸图片,并构建待识别人脸身份库;根据输入的视频帧,使用训练好的yolov3人脸检测模型,检测每帧图像的人脸位置;将检测到的人脸使用训练好的神经网络提取特征,并与待识别人脸身份库中的人脸特征进行比对确定身份,初始化待跟踪的人脸目标;对人脸对应的人物身份进行跟踪。本发明对于跟踪的目标可以确认到人物的id。

    基于RDSNet的车辆属性识别方法

    公开(公告)号:CN112070048A

    公开(公告)日:2020-12-11

    申请号:CN202010972154.2

    申请日:2020-09-16

    Applicant: 福州大学

    Inventor: 柯逍 陈宇杰 黄旭

    Abstract: 本发明涉及一种基于RDSNet的车辆属性识别方法,包括以下步骤:步骤S1:采集车辆图片,处理后分为车辆数据集和车辆属性数据集;步骤S2:构建基于RDSNet的网络模型,并根据车辆数据集训练,得到车辆检测模型;步骤S3:构建基于细粒度分类的车辆属性分类网络模型,并根据车辆属性数据集训练,得到车辆属性分类模型;步骤S4:将待测复杂场景图像,通过车辆检测模型,得到待测复杂场景图像每一个汽车的精确边界框;步骤S5:将步骤S4处理后的图像,输入车辆属性分类模型,获取车辆属性信息;步骤S6:将得到的汽车的精确边界框和车辆属性信息,标注于待测复杂场景图像中。本发明有效的提升了车辆属性识别的精确程度。

    基于数据泛化与特征增强的人脸检测方法

    公开(公告)号:CN114267069A

    公开(公告)日:2022-04-01

    申请号:CN202111604882.9

    申请日:2021-12-25

    Applicant: 福州大学

    Inventor: 柯逍 黄旭 陈宇杰

    Abstract: 本发明涉及一种基于数据泛化与特征增强的人脸检测方法,包括以下步骤:步骤S1:获取人脸检测数据集,并预处理;步骤S2:构建人脸检测神经网络,并分别在神经网络中的残差结构中加入通道自注意力模块;在骨干网部分加入感受野匹配模块;在特征提取部分加入跨层特征融合模块;步骤S3:基于预处理后的人脸检测数据集训练人脸检测神经网络;步骤S4:使用训练后的人脸检测神经网络进行人脸检测,若可以直接检测到人脸则直接进行定位,如果无法直接定位,则使用检测到的关键点位置辅助定位人脸位置,最终输出人脸检测结果。本发明能够有效地对待检测的图像、视频帧中的人脸进行定位并输出结果。

    基于数据泛化与特征增强的人脸检测方法

    公开(公告)号:CN114267069B

    公开(公告)日:2024-07-02

    申请号:CN202111604882.9

    申请日:2021-12-25

    Applicant: 福州大学

    Inventor: 柯逍 黄旭 陈宇杰

    Abstract: 本发明涉及一种基于数据泛化与特征增强的人脸检测方法,包括以下步骤:步骤S1:获取人脸检测数据集,并预处理;步骤S2:构建人脸检测神经网络,并分别在神经网络中的残差结构中加入通道自注意力模块;在骨干网部分加入感受野匹配模块;在特征提取部分加入跨层特征融合模块;步骤S3:基于预处理后的人脸检测数据集训练人脸检测神经网络;步骤S4:使用训练后的人脸检测神经网络进行人脸检测,若可以直接检测到人脸则直接进行定位,如果无法直接定位,则使用检测到的关键点位置辅助定位人脸位置,最终输出人脸检测结果。本发明能够有效地对待检测的图像、视频帧中的人脸进行定位并输出结果。

    一种基于人脸识别的人物身份跟踪方法及系统

    公开(公告)号:CN112149557B

    公开(公告)日:2022-08-09

    申请号:CN202011000236.7

    申请日:2020-09-22

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于人脸识别的人物身份跟踪方法及系统,包括步骤:采用人脸数据集训练神经网络;采集待识别身份人物的人脸图片,并构建待识别人脸身份库;根据输入的视频帧,使用训练好的yolov3人脸检测模型,检测每帧图像的人脸位置;将检测到的人脸使用训练好的神经网络提取特征,并与待识别人脸身份库中的人脸特征进行比对确定身份,初始化待跟踪的人脸目标;对人脸对应的人物身份进行跟踪。本发明对于跟踪的目标可以确认到人物的id。

    基于RDSNet的车辆属性识别方法

    公开(公告)号:CN112070048B

    公开(公告)日:2022-08-09

    申请号:CN202010972154.2

    申请日:2020-09-16

    Applicant: 福州大学

    Inventor: 柯逍 陈宇杰 黄旭

    Abstract: 本发明涉及一种基于RDSNet的车辆属性识别方法,包括以下步骤:步骤S1:采集车辆图片,处理后分为车辆数据集和车辆属性数据集;步骤S2:构建基于RDSNet的网络模型,并根据车辆数据集训练,得到车辆检测模型;步骤S3:构建基于细粒度分类的车辆属性分类网络模型,并根据车辆属性数据集训练,得到车辆属性分类模型;步骤S4:将待测复杂场景图像,通过车辆检测模型,得到待测复杂场景图像每一个汽车的精确边界框;步骤S5:将步骤S4处理后的图像,输入车辆属性分类模型,获取车辆属性信息;步骤S6:将得到的汽车的精确边界框和车辆属性信息,标注于待测复杂场景图像中。本发明有效的提升了车辆属性识别的精确程度。

    一种基于YOLOv3与文本识别的美式车牌识别方法

    公开(公告)号:CN112232371A

    公开(公告)日:2021-01-15

    申请号:CN202010978381.6

    申请日:2020-09-17

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于YOLOv3与文本识别的美式车牌识别方法,包括步骤S1:采集美式车牌中各个州的车牌的图像数据,构成美式车牌图像集;步骤S2:对下载好的图像进行人工标注,生成xml文件,以符合YOLOv3神经网络模型训练的要求;步骤S3:对步骤S2中处理好的数据进行若干数据增强,用以提高图像质量,利于之后的训练与识别;步骤S4:训练YOLOv3神经网络模型,并用训练好的权重检测出车牌的特征区域;步骤S5:车牌特殊字符作为新样本加入deep‑text文本识别工具训练,将检测出的车牌特征区域通过训练好的文本识别工具提取出对应的字符信息。本发明提出方法的准确率高,时效性好,对于美式的车牌识别具有实际应用意义。

Patent Agency Ranking