-
公开(公告)号:CN118736224A
公开(公告)日:2024-10-01
申请号:CN202410845144.0
申请日:2024-06-27
Applicant: 苏州大学
IPC: G06V10/26 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/08 , G06V10/80 , G06N3/0464 , G06V10/77
Abstract: 本发明涉及图像处理技术领域,尤其是指一种小样本语义分割方法及装置。获取训练集,构建初始小样本语义分割模型,将训练集数据输入,对支持图像的高层特征与查询图像的高层特征分别进行校正,作为支持特征与查询特征,计算支持特征与查询特征的亲和矩阵,通过Softmax函数,得到第一矩阵,基于第一矩阵对支持掩码进行增强,得到增强支持掩码,通过增强支持掩码对亲和矩阵进行加权融合,得到先验掩码,将先验掩码以及获取的支持原型、中层查询特征输入特征富集模块,输出查询图像的预测分割图与查询图像的各个尺度分割图,利用损失函数对模型进行训练,得到目标小样本语义分割模型,缓解了数据集类别不平衡的问题,提高了对查询图像目标分割的精度。