-
公开(公告)号:CN116644760A
公开(公告)日:2023-08-25
申请号:CN202310537056.X
申请日:2023-05-13
Applicant: 重庆大学
IPC: G06F40/35 , G06N3/0442 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于Bert模型和双通道模型的对话文本情感分析方法,使用Bert模型对输入文本进行字级别的向量化操作,通过预训练学习到的先验知识来增强文本向量的语义表达,使用遮掩策略强化对文本中词的理解。对话文本为短文本,提取短文本的语义信息存在一定难度,特征提取层结合BiGRU和CNN网络的优点,使用BiGRU网络捕获上下文的语义信息,从全局上来衡量文本的情感信息,并借助CNN网络对文本中多层次的特征信息进行局部提取,以便捕获更有利于文本情感分析的特征信息。将BiGRU和CNN网络提取的特征进行拼接输入至情感分类层中,通过全连接层和Softmax操作后实现情感分类。
-
公开(公告)号:CN117315019A
公开(公告)日:2023-12-29
申请号:CN202311145718.5
申请日:2023-09-06
Applicant: 重庆大学
Abstract: 本发明公开了一种基于深度学习的机械臂抓取方法,获得通过深度相机获得带抓取物体的RGB图像与深度图像。对深度图像进行检测,获得无效像素并且重建这些数据,以便于神经网络获取更准确的抓取位姿。对RGB图像与深度图进行对齐,获得RGB‑D图像,对齐进行中心部分裁剪,获得RGB‑D图像。采用预先训练的改进后GGCNN2网络模型对带抓取物体的RGB‑D图像进行输入,生成带抓取物体的抓取位姿信息。在机械臂基座标系即笛卡尔坐标系下的抓取位姿。输入抓取信息,控制机械臂进行抓取任务。本发明解决了原网络中泛化和学习能力较差的问题,使得改进后的神经网络在获得带抓取物体的抓取位姿上具有更好的性能,在高精度抓取领域更具有实用性。
-