基于边缘计算及改进的YOLOv3的火灾检测方法及系统

    公开(公告)号:CN114998831A

    公开(公告)日:2022-09-02

    申请号:CN202210559677.3

    申请日:2022-05-23

    Abstract: 本发明提供一种基于边缘计算及改进的YOLOv3的火灾检测方法及系统,图像经过随机裁剪和扩容,增加模型的泛化能力,能够更好地学习到目标特征;在YOLOv3的基础上对算法进行改进,将骨干网络Darknet‑53替换为ResNet50‑vd网络,并采用可变形的卷积层替换了ResNet50‑vd中的一部分卷积层,在多尺度检测中添加104×104尺度的检测以及扩展步长2,4,8,使之可以对火灾进行更好的检测。计算差别区域的损失值,继而调整下一次迭代的模型参数,提升了模型对火灾区域的检测精度,最终得到最优的模型效果,并保存。与同类火灾检测算法相比具有更好的鲁棒性,无论是在准确度还是速度上都有良好的表现。不仅在大火灾区域的图像上有良好的检测结果,在小火灾区域都可适用,通用性强。

Patent Agency Ranking