Abstract:
Embodiments herein describe various arrangements of an optical bench used to perform spectroscopy. For example, a spectroscopy system may include a pump optical signal and a probe optical signal that are transmitted through a vapor cell on the optical bench. The optical bench can further include one or more optical components (e.g., beam splitter and a thin film polarizer) for redirecting a portion of the probe and pump optical signals to photodiodes. In one embodiment, the measurements obtained from the photodiodes can be used to perform multiple tasks. For example, the measurements can be used to adjust the power of the optical signals in the optical bench (e.g., make DC power adjustments), perform amplitude modulation correction, and lock a laser frequency to a peak of an absorption spectrum of the vapor in the vapor cell.
Abstract:
A device for detecting electromagnetic radiation comprises a waveguide and at least one resonator on a substrate, and a low-refractive index region between each resonator and the substrate. The low-refractive index region has a lower refractive index than a material of the resonator. The low-refractive index region may be annular, and may have a width corresponding to a width of a region in which electromagnetic radiation is concentrated in a whispering-gallery resonant mode. The low-refractive index region may be an air gap between the substrate and the resonator. The device may be a spectrometer for detecting a plurality of predetermined wavelengths of electromagnetic radiation.
Abstract:
An optical imaging system (e.g., hyperspectral imaging system) is described herein which includes imaging optics, an uni-axial homogenizer (including a rectangular cross-section light pipe and an astigmatic paraxial optic), and a detector. The uni-axial homogenizer is configured to preserve imaging along one axis while homogenizing (removing all image information) along a second perpendicular axis. In one embodiment, the uni-axial homogenizer is utilized in a spectrograph of a hyperspectral imaging system where the rectangular cross-section light pipe replaces the entrance slit of the spectrograph and the astigmatic paraxial optic is built into the design of the spectrometer's optics.
Abstract:
A spectrometer (100) for characterizing a radiation beam, the spectrometer (100) comprising an optical radiation guiding system comprising a collimator (110) for collimating the radiation beam into a collimated radiation beam, and a beam shaper (120) for distributing the power of the collimated radiation beam over a discrete number of line shaped fields, and a spectrometer chip (130) wherein the spectrometer chip (130) is adapted for processing the radiation in a discrete number of line shaped fields coming from the beam shaper (120).
Abstract:
A stabilisation system for stabilising an output of a controllable light or laser source comprises a randomizer for randomizing light from the controllable light or laser source to generate a speckle pattern; a detector for detecting the speckle pattern to determine one or more properties of the light and/or changes in one or more properties of the light; and a controller for controlling the controllable light or laser source based on the determined one or more properties of the light and/or changes in one or more properties of the light.
Abstract:
A spectrophotometer optics system is provided. The spectrophotometer optics system includes an optical sensing array and an optical waveguide including an input side and an output side. The input side of the optical waveguide receives input light and the optical sensing array is located at the output side of optical waveguide. The optical waveguide is configured to carry light to be analyzed by total internal reflection to the output side of the optical waveguide and to direct the light to be analyzed toward the optical sensing array. The spectrophotometer optics system includes an optical dispersive element configured to separate the light to be analyzed into separate wavelength components, and the optical dispersive element is supported by the optical waveguide.