Abstract:
Infrared detection systems according to embodiments include an infrared detector, a storage, and a correction calculator. The infrared detector is configured to detect infrared light by absorbing and photoelectrically converting infrared light of a specific wavelength range. The infrared detector is capable of sweeping an absorption peak wavelength of an absorption spectrum of infrared light. The storage is configured to store a plurality of correction coefficients for correcting a detection value from the infrared detector in accordance with the absorption peak wavelength of the infrared detector with respect to a wavelength range of an atmospheric window. The correction calculator corrects the detection value from the infrared detector for each absorption peak wavelength using corresponding correction coefficients stored in the storage.
Abstract:
An optical grain evaluation device is provided with: a light-projecting part 58 through which light from a light source is projected to grain; a light-receiving part 59 on which light transmitted through the grain is incident; a grain evaluation unit 60 configured to evaluate the grain based on information relating to the received light; and a shielding part SH that separates an area between the light source 50 and the light-projecting part 59 from an area between the light-receiving part 59 and the grain evaluation unit 60, and prevents light from the light-projecting part 58 from directly entering the light-receiving part 59. The area between the light source 50 and the light-projecting part 58, and the area between the light-receiving part 59 and the grain evaluation unit 60 are configured, over the entirety of the areas, as air transmission areas in which light is transmitted through air.
Abstract:
A system for reducing effects relating to stretching of an optical fiber, the system comprising: an optical source (18c), the optical source outputting an optical signal; a terahertz transmitter (14c) optically coupled to the optical source, the terahertz transmitter configured to emit terahertz radiation to a sample when activated by the optical signal; a terahertz receiver (15c) optically coupled to the optical source the terahertz receiver configured to detect terahertz radiation conditioned by the sample and generate an electrical signal which can be interpreted, scaled and/or digitized by a data acquisition system electrically coupled to the terahertz receiver; a means in the form of a single fibre (54c) for providing the optical signal to both the terahertz transmitter and terahertz receiver such that the terahertz receiver is synchronized to the terahertz transmitter by the optical signal; and wherein the means allows for the stretching of the optical fiber carrying the optical signal provided to the terahertz transmitter and terahertz receiver such that the terahertz receiver is synchronized to the terahertz transmitter by the optical signal.
Abstract:
A protective sheath having a closed end and an open end is sized to receive a hand held spectrometer. The spectrometer can be placed in the sheath to calibrate the spectrometer and to measure samples. In a calibration orientation, an optical head of the spectrometer can be oriented toward the closed end of the sheath where a calibration material is located. In a measurement orientation, the optical head of the spectrometer can be oriented toward the open end of the sheath in order to measure a sample. To change the orientation, the spectrometer can be removed from the sheath container and placed in the sheath container with the calibration orientation or the measurement orientation. Accessory container covers can be provided and placed on the open end of the sheath with samples placed therein in order to provide improved measurements.
Abstract:
A method for determining spectral calibration data (λcal(Sd), Sd,cal(λ)) of a Fabry-Perot interferometer (100) comprises: - forming a plurality of filtered spectral peaks (P'1, P'2) by filtering input light (LB1) with a Fabry-Perot etalon (50) such that a first filtered peak (Ρ'1) corresponds to a first transmittance peak (P1) of the etalon (50), and such that a second filtered peak (P'2) corresponds to a second transmittance peak (P2) of the etalon (50), - using the Fabry-Perot interferometer (100) for measuring a spectral intensity distribution (M(Sd)) of the filtered spectral peaks (Ρ'1, P'2), wherein the spectral intensity distribution (M(Sd)) is measured by varying the mirror gap (dFP) of the Fabry-Perot interferometer (100), and by providing a control signal (Sd) indicative of the mirror gap (dFP), and - determining the spectral calibration data (λcal(Sd), Sd,cal(λ)) by matching the measured spectral intensity distribution (M(Sd)) with the spectral transmittance (ΤΕ(λ)) of the etalon (50).
Abstract:
The invention relates to an optical sensor device which measures in a spatially resolving manner. In order to devise such a sensor device with which a contacting measurement of the article to be measured can be carried out and which can be mass-produced, the sensor device is designed such that a transfer of the calibration onto individual sensor devices is possible with high accuracy. According to certain embodiments of the design of the sensor device and of the evaluation methods, interferences with the measurement of the amount of the target substance are minimized.
Abstract:
A light wavelength measurement method of measuring a wavelength of target light includes: receiving target light on a second dispersion device that disperses the target light into a plurality of second beams which reach a plurality of positions corresponding to the wavelength of the target light (S106, S202); and measuring the wavelength of the target light, by using the plurality of the second beams as a vernier scale for measuring the wavelength of the target light within a wavelength range specified by a main scale (S108, S204).
Abstract:
An infrared spectrometer assembly (100; 200) includes an entrance slit (101; 201) and a collimating optical element (102; 202) aligned with the entrance slit. A diffractive optical element (104; 204) is optically coupled to the collimating optical element. A focusing optical element (103; 203) is optically coupled to the diffractive optical element. A detector array (106; 206) is optically coupled to the focusing optical element. A linear variable filter, LVF, (108; 208) is optically coupled between the focusing optical element and the detector array. A method (300) for filtering a baseline signal emitted from spectrometer components in the infrared spectrometer assembly includes transmitting (304) radiation into a spectrometer and passing (306) the radiation through the LVF to filter the baseline signal being emitted from spectrometer components. The method includes receiving (308) the radiation in the detector array.
Abstract:
Embodiments of the present invention provide a Raman spectroscopic inspection method, comprising the steps of: measuring a Raman spectrum of an object to be inspected successively to collect a plurality of Raman spectroscopic signals; superposing the plurality of Raman spectroscopic signals to form a superposition signal; filtering out a florescence interfering signal from the superposition signal; and identifying the object to be inspected on basis of the superposition signal from which the florescence interfering signal has been filtered out. By means of the above method, a desired Raman spectroscopic signal may be acquired by removing the interference caused by a florescence signal from a Raman spectroscopic inspection signal of the object. It may inspect correctly the characteristics of the Raman spectrum of the object so as to identify the object effectively.