Abstract:
This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.
Abstract:
A wavelength tunable filter (200) selectively transmitting light of any desired wavelength within the range of 450 nm to 1100 nm without using a band pass filter is disclosed. The wavelength tunable filter (200) comprises a plurality of polarizers (101a to 101f) and a plurality of units between the adjacent polarizers (101 a to 101f) on a common optical axis (111) in a housing (201). Each unit has, in order from light incident side, a quartz birefringent plate (102), an ultra-wide band 1/4 waveplate (103) and an ultra-wide band 1/2 waveplate (104). The ultra-wide band 1/2 waveplate (104) is accommodated in a cylindrical rotatable body (303; 403; 503) and it is rotated by a rotating mechanism.
Abstract:
A spectrometer (10) for measuring a spectral signature of an object comprises fringe generating optics (12) for use with a camera (65) and a processor. The fringe generating optics are formed of front optics (45) and birefringent optics (55). The front optics comprises a diffuser adapted to receive light from the object. The birefringent optics is adapted to receive light from the diffuser and to generate interference fringes. The camera is adapted to receive the interference fringes and the processor generates the spectral signature of the object. This spectrometer is an improved Fourier transform spectrometer suitable for use with digital cameras, such as cameras found in mobile devices.
Abstract:
A method, system and polarization filter for analyzing polarization properties of light are described, the method comprising: receiving image data from a plurality of image sensor cells, the image sensor cells comprised in an image sensing system; separating from the received image data polarization information and scene image data of a scene being captured; and processing the polarization information to deduce information. Additionally, a polarization filter for analyzing polarization properties of light is described, the polarization filter comprising an array of polarization cells in various directions of polarization, the polarization filter comprising a core array of at least horizontal polarization filter cell, vertical polarization filter cell, no-polarization filter cell and circular polarization filter cell.
Abstract:
An optical device includes a waveplate sandwiched between first and second polarizers and is arranged to receive light emanating from an object or object image that is in motion relative to the optical device. A detector array includes one or more detector elements and is optically coupled to receive light from the second polarizer. Each detector element of the detector array provides an electrical output signal that varies according to intensity of the light received from the second polarizer. The intensity of the light is a function of relative motion of the object or the object image and the optical device and contains spectral information about an object point of the object.
Abstract:
A spectrometric analyzing device is capable of analyzing a thin film with high accuracy by using light having an arbitrary wavelength, such as not only infrared light but also visible light, ultraviolet light and X-ray, and using whatever refractive index of a supporting member of the thin film. A spectrometric analyzing device comprises a light source (1), a polarizing filter (2), a detection unit (3), a regression operation unit (4) and an absorbance spectrum calculation unit (5). The light source (1) emits light at n different angles of incidence (θ n ) to a measurement portion. The polarizing filter (2) shields an s-polarized component. The detection unit (3) detects transmitted spectra (S). The regression operation unit (4) uses the transmitted spectra (S) and a mixing ratio (R) to obtain an in-plane mode spectrum (s ip ) and an out-of-plane mode spectrum (s op ) through a regression analysis. The absorbance spectrum calculation unit (5) calculates an in-plane mode absorbance spectrum (A ip ) and an out-of-plane mode absorbance spectrum (A op ) of the thin film, based on the results from a state in which the thin film is on the supporting member and a state in which no thin film is on the supporting member.
Abstract:
An ellipsometer or polarimeter system and method for controlling intensity of an electromagnetic beam over a spectrum of wavelengths by applying control (P2) and beam (P) polarizers, optionally in combination with an intervening and control compensator (C).
Abstract:
A method for determining analyte concentration levels is provided. The method includes acquiring radiation scattered off or transmitted by a target, analyzing at least a first portion of the radiation via a first technique to generate a first measurement of analyte concentration levels, and analyzing at least a second portion of the radiation via a second technique to generate a second measurement of analyte concentration levels. The method further determines analyte concentration levels based on at least one of the first measurement or the second measurement. In addition, a system for implementing the method and a probe for measuring and monitoring the analyte concentration levels is provided.