Abstract:
A medical device system for providing sensor data capture includes a medical device that may include one or more removably coupled sensor hubs and that includes a display to provide sensor data and at least one data interface (DI) port that may be a sensor-agnostic DI (SA-DI) port and a data transfer cable that may be compatible with the sensor-agnostic DI port and includes a first electromechanical connector configured to detachably couple to the SA-DI port and a second electromechanical connector configured to couple to the sensor and that includes a cable memory and processor configured to execute stored software to format sensor data according to a protocol of the SA-DI port, an authentication circuit, and a cable isolation device to limit patient leakage current flow from the medical device to the sensor and to electrically isolate the authentication circuit from the cable processor and the cable memory.
Abstract:
A negative pressure massage apparatus includes a vacuum pump, two solenoid valves and a control board. The vacuum pump is used to generate a negative pressure outside the negative pressure massage apparatus. Two solenoid valves are used to control a gas flow input into the negative pressure massage apparatus. The control board is used to activate or stop at least one of the vacuum pumps, and the two solenoid valves. The present disclosure further includes a method of using the negative pressure massage apparatus.
Abstract:
A system for monitoring performance of a resuscitation activity on a patient by an acute care provider is provided. The system includes: a first wearable sensor configured to sense movement of a first portion of an acute care provider's hand; a second wearable sensor configured to sense movement of a second portion of the acute care provider's hand; and a controller. The controller is configured to: receive and process signals representative of performance of a resuscitation activity from the first sensor and the second sensor; identify from the processed signals information indicative of at least one of a relative distance, a relative orientation, a change in relative distance and a change in relative orientation between the first sensor and the second sensor during performance of the resuscitation activity; and determine at least one resuscitation activity parameter based, at least in part, on the identified information.
Abstract:
Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment are provided. “Internet-of-Things” (IoT) functionality is provided for pool and spa equipment in a flexible and cost-effective manner. Network connectivity and remote monitoring/control of pool and spa equipment is provided by various components such as a network communication and local control subsystem installed in pool/spa equipment, and other components. Also disclosed are various control processes (“pool logic”) which can be embodied as software code installed in any of the various embodiments of the present disclosure.
Abstract:
Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment are provided. “Internet-of-Things” (IoT) functionality is provided for pool and spa equipment in a flexible and cost-effective manner. Network connectivity and remote monitoring/control of pool and spa equipment is provided by various components such as a network communication and local control subsystem installed in pool/spa equipment, and other components. Also disclosed are various control processes (“pool logic”) which can be embodied as software code installed in any of the various embodiments of the present disclosure.
Abstract:
Method and device for diagnosing and/or treating sleep apnea and related sleep disorders, such as snoring and respiratory effort-related arousals, includes an inflatable implement which is applied to the external surface of the chest and/or abdomen (Vest). Pressure is caused to rise to a predetermined positive value. The rate of airflow into and/or out of said Vest is monitored, whereby the Vest Flow is displayed or processed to obtain information about the breathing characteristics of the patient.
Abstract:
Systems for auto-calibrating a pneumatic compression system may include one or more manifolds from an inflation fluid source and one or more individually inflatable cells. One or more pressure sensors may be associated with the one or more manifolds and/or each of the individually inflatable cells. Each of the pressure sensors may provide either dynamic or static pressure data to a controller. A method for auto-calibrating the compression system may include introducing a portion of inflation fluid into a cell while measuring a dynamic cell pressure, stopping the introduction of fluid, measuring a static cell pressure, and comparing, by the computing device, the dynamic cell pressure and the static cell pressure. sure. The comparison between dynamic and static cell pressures may be used to calculate a dynamic target cell pressure equivalent to a desired static target cell pressure.
Abstract:
Actuators and methods of use are provided. An actuator may comprise an inner member made from an elastic material and defining a compartment for receiving an actuating fluid, the inner member being moveable in a longitudinal direction from a relaxed state to an expanded state by introducing an actuating fluid into the inner member; and an outer member made from an inelastic material and being disposed around the elastic inner member to control expansion of the elastic inner member in a radial direction, the outer member being moveable from a folded relaxed configuration to an unfolded extended configuration as the inner member moves from the relaxed state to the expanded state, wherein the movement of the actuator between the relaxed state and the expanded state causes a movement of a structure to which the actuator is attached.
Abstract:
A pool or spa control system includes, a main control panel housing a motherboard, relay bank, and local terminal. The motherboard includes a processor in two-way communication with a relay bank socket via an internal bus. The relay bank is connectable to the relay bank socket and includes a processor, memory, plurality of relays, connector, and an internal bus establishing two-way communication between the relay bank processor and the motherboard processor when the relay bank is connected to the relay bank socket. The local terminal includes a control processor, user interface, and memory, and is in two-way communication with the motherboard processor for allowing user control of the system. The control processor automatically discovers and assigns the relay bank a network address upon connection of the relay bank to the motherboard relay bank socket, and the relay bank returns relay bank parameter information, which the local terminal stores in memory.
Abstract:
A combination respiratory therapy management system creates a combined respiratory therapy prescription that can be executed by a combined respiratory therapy device to provide multiple coordinated respiratory therapies to a patient. The system can update the combined respiratory therapy prescription and implement the updates while the combined respiratory therapy device is in use. Some versions of the system provide additional features that allow the combined respiratory therapy prescriptions to be created, accessed, shared with other users, and performed by the combination respiratory therapy device in a customizable user-friendly and non-threatening way.