Abstract:
The present invention relates to functional fluid compositions containing antioxidants, and specifically stable compositions containing antioxidants with limited solubility in and/or limited compatibility with the functional fluids with which they are used. In particular the present invention deals with functional fluids used in internal combustion engines, such as engine oils, and antioxidants containing a phenolic or benzoic group, where the antioxidant is present in the functional fluid composition at levels that would otherwise cause the composition to be unstable and/or hazy.
Abstract:
The present invention relates to functional fluid compositions containing antioxidants, and specifically stable compositions containing antioxidants with limited solubility in and/or limited compatibility with the functional fluids with which they are used. In particular the present invention deals with functional fluids used in internal combustion engines, such as engine oils, and antioxidants containing a phenolic or benzoic group, where the antioxidant is present in the functional fluid composition at levels that would otherwise cause the composition to be unstable and/or hazy.
Abstract:
Marking a petroleum product includes adding a covert dye selected from the group consisting of azadipyrromethene dyes, dipyrromethene dyes, and any combination thereof to the petroleum product and distributing the dye in the petroleum product. A petroleum product selected for analysis may be spectroscopically analyzed for the presence of an azadipyrromethene dye, a dipyrromethene dye, or a combination thereof. A concentration of at least one azadipyrromethene or dipyrromethene dye present in the portion of the petroleum product may be determined to identify the petroleum product as counterfeit, adulterated, or authentic based on the determined concentration of the azadipyrromethene or dipyrromethene dye.
Abstract:
Method of marking a hydrocarbon liquid includes adding to the liquid a tracer compound of Formula I: wherein, each X is independently hydrogen, bromine, fluorine, a halogenated alkyl group, a linear, branched or cyclic C1-C20 alkyl group, or a phenyl group substituted with one or more halogen atoms, an alkyl group or a halogenated alkyl group; each Y is independently bromine, fluorine, a halogenated alkyl group, a branched or cyclic C1-C9 alkyl group, or a phenyl group substituted with at least one alkyl and/or a halogenated alkyl group; Z is a phenyl group substituted with one or more halogen atoms, an aliphatic or halogenated aliphatic group, a halogenated alkyl group or a linear, branched or cyclic C1-C20 alkyl group, provided that when each Y is a fluorine atom, Z is not a linear or branched C1-C20 alkyl group.
Abstract:
Method of marking a hydrocarbon liquid includes adding to the liquid, a tracer compound of Formula I: wherein, each X is independently selected from a hydrogen, bromine, or fluorine atom, a partially or fully halogenated alkyl group, a linear, branched or cyclic C1-C20 alkyl group and a phenyl group substituted with one or more halogen atoms, an alkyl group or a halogenated alkyl group; each Y is independently selected from a bromine, or fluorine atom, a partially or fully halogenated alkyl group, a branched or cyclic C1-C9 alkyl group and a phenyl group substituted with at least one alkyl and/or a halogenated alkyl group; Z is selected from (i) a phenyl group substituted with one or more halogen atoms, an aliphatic or halogenated aliphatic group, (ii) a partially or fully halogenated alkyl group or (iii) a linear, branched or cyclic C1-C20 alkyl group provided that when each Y is a fluorine atom, Z is not a linear or branched C1-C20 alkyl group.
Abstract:
Provided are additives of formula I for use in hydrocarbonaceous compositions, such as petroleum or liquid fuels: (I) wherein R1, R2, R3, R4, and R5 are as defined herein. The additives improve the corrosion resistance of the compositions and, when the composition is biodiesel, also improve microbial resistance. The additives further enhance the antimicrobial efficacy of any added biocides contained in such compositions.
Abstract:
The present application provides a method for reducing fouling, including particulate-induced fouling, in a hydrocarbon refining process including the steps of providing a crude hydrocarbon for a refining process; adding an additive selected from: wherein R1, R2, R3, and R4 are independently selected from a branched or straight-chained C5-C80 alkyl group, and M1, M2, and M3 are independently selected from Ca, Mg and Na.
Abstract:
A composition is disclosed that comprises the reaction product of an acidic organic compound, a boron compound, and a basic organic compound. The composition is useful as a detergent additive for lubricants and hydrocarbon fuels.
Abstract:
A composition comprising a hydrocarbon polymer having attached thereto pendant groups Aa and Bb wherein each A is independently selected from members of the group consisting of: groups of the formula and each B is independently selected from members of the group of formula: wherein each X is independently O, S, or NRb, and each Z is independently a group of the formula Ra is an ethylene group, a propylene group, which groups optionally have hydrocarbyl or hydroxyhydrocarbyl substituents, or wherein J is H, SH, NH2, or OH, and tautomers thereof; a is 0 or a number ranging from 1 to about 50, and b is a number ranging from 1 to about 30; wherein each of the groups is defined in greater detail herein.
Abstract:
Polar monomer-containing copolymers derived from at least one &agr;, &bgr; unsaturated carbonyl compound, such as alkyl acrylates and one or more olefins, such olefins including ethylene and C3-C20 &agr;-olefins such as propylene and 1-butene, which copolymers have (a) an average ethylene sequence length, ESL, of from about 1.0 to less than about 3.0; (b) an average of at least 5 branches per 100 carbon atoms of the copolymer chains comprising the copolymer; (c) at least about 50% of said branches being methyl and/or ethyl branches; (d) substantially all of said incorporated polar monomer is present at the terminal position of said branches; (e) at least about 30% of said copolymer chains terminated with a vinyl or vinylene group; (f) a number average molecular weight, Mn, of from about 300 to about 15,000 when the copolymer is intended for dipersant or wax crystal modifier uses and up to about 500,000 where intended for viscosity modifier uses; and (g) substantial solubility in hydrocarbon and/or synthetic base oil. The copolymers are produced using late-transition-metal catalyst systems and, as an olefin monomer source other than ethylene preferably inexpensive, highly dilute refinery or steam cracker feed streams that have undergone only limited clean-up steps. Fuel and lubricating oil additives, are produced. Where functionalization and derivatization of these copolymers is required for such additives it is facilitated by the olefinic structures available in the copolymer chains.