Abstract:
For data training in a memory device, a selecting unit selects a subset of data bit patterns received from a controlling device. In addition, a storing unit comprised of memory cells of the memory device stores the selected subset of data bit patterns. Such stored data bit patterns are then sent back to the controlling device that determines the level of data skew. Such data training more accurately reflects the actual paths and environments of the transmitted data bits.
Abstract:
The present invention relates to a novel cephalosporin compound, and pharmaceutically acceptable non-toxic salt, physiologically hydrolysable ester, hydrate, solvate or isomer thereof, to a pharmaceutical composition comprising the compound, and to a process for preparing the compound.
Abstract:
A fast handover method optimized for IEEE 802.11 networks. In a wireless local area system including a mobile terminal and at least two wireless access points (APs) that communicate with the mobile terminal over a unique radio channel, the fast handover method includes receiving a beacon frame signal from the serving AP and the neighbor APs of the mobile terminal; generating a first signal to determine a state of each of the neighbor APs based on the beacon frame signal received from each of the neighbor APs; comparing the first signal with predefined thresholds, classifying the neighbor APs into a detected AP, a candidate AP, and a target AP according to a result of the comparison, and storing the classification result in a neighbor AP list; and selecting an AP for the handover based on the classification result in the neighbor AP list.
Abstract:
A synchronous semiconductor memory device includes a data input buffer and a data strobe input buffer. The data strobe input buffer includes an input buffer circuit and a detection circuit. The input buffer circuit is configured to be enabled based on an active signal, and to compare a data strobe signal with a first reference voltage to generate an internal data strobe signal. The detection circuit is configured to be enabled based on the active signal, and to compare the data strobe signal with a second reference voltage to generate a detection signal for enabling the data input buffer.
Abstract:
A memory system includes a memory device that includes an active termination circuit. The memory system further includes a controller circuit that includes a frequency control circuit that is configured to modulate a system clock between a first frequency value and a second frequency value, greater than the first frequency value, responsive to a control signal. The controller circuit is further configured to determine an active termination value for the active termination circuit responsive to the system clock at the first frequency value, and to apply commands to the memory device responsive to the system clock at the second frequency value.
Abstract:
The present invention relates to an image sensor comprising an amorphous silicon thin-film transistor optical sensor which functions as an image sensor used for an X-ray photography device, a fingerprint recognition apparatus, a scanner, etc., and a method of manufacturing the image sensor. Since the thin-film transistor optical sensor according to the present invention has a high-resistance silicon region by disposing an offset region in a channel region, a dark leakage current of the optical sensor remains in a low level even under a high voltage. Therefore, it is possible to apply a high voltage to the thin-film transistor optical sensor according to the present invention so that the image senor can be sensitive to a weak light. In addition, since the storage capacitance in the image sensor is formed in a double structure, the image sensor has a high value of capacitance. Furthermore, since a lower common electrode is electrically connected to an upper common electrode, the image sensor has a stable structure.
Abstract:
The present invention is related to a method of crystallizing an amorphous silicon layer and a crystallizing apparatus thereof which crystallize an amorphous silicon layer using plasma. The present invention includes the steps of depositing an inducing substance for silicon crystallization on an amorphous silicon layer by plasma exposure, and carrying out annealing on the amorphous silicon layer to the amorphous silicon layer. The present invention includes a chamber having an inner space, a substrate support in the chamber wherein the substrate support supports a substrate, a plasma generating means in the chamber wherein the plasma generating means produces plasma inside the chamber, and a heater at the substrate support wherein the heater supplies the substrate with heat.
Abstract:
A field emitter having a high current density even at a low voltage using a carbon nanotube film, a method of manufacturing the same, and a field emission display device having the field emitter, are provided, The field emitter includes an insulating substrate. a thin film transistor formed on the insulating substrate, the thin film transistor having a semiconductor layer, a source electrode, a drain electrode and a gate electrode, and an electron emitting unit formed of a carbon nanotube film on the drain electrode of the thin film transistor The thin film transistor can be a coplanar-type transistor, a stagger-type transistor, or an inverse stagger-type transistor. The surface of a portion of the drain electrode, which contacts the carbon nanotube film, contains catalytic metal which is transition metal such as nickel or cobalt. Alternatively, the drain electrode itself can be formed of catalytic metal for carbon nanotube growth.
Abstract:
The present invention related to a method of forming a polycrystalline silicon film which forms a polysilicon film by crystallizing silicon by means of carrying out plasma exposure and applying an electric field thereon. The present invention includes the steps of forming a metal plasma exposure layer on a substrate wherein the metal plasma exposure layer works as a catalyst for metal induced crystallization, and depositing amorphous silicon on the substrate on which the plasma exposure layer is formed while an electric field is applied thereon. The present invention enables to crystallize the whole film in such a short annealing time less than 10 minutes by forming a metal layer under a silicon layer by plasma particle exposure and, successively, by crystallizing silicon which is being formed under 520° C. And, the present invention reduces metal contamination in the crystallized silicon film as the amount of metal is easy to be controlled by plasma exposure time. Moreover, the present invention enables to form a polysilicon film several &mgr;m thick as it is easy to form polysilicon of which thickness does not matter.
Abstract:
A method of crystallizing an amorphous film includes the steps of forming an amorphous film capable of being crystallized on a substrate, the amorphous film being in contact with a metal layer; and crystallizing the amorphous film by forming an electric field in the amorphous film and the metal layer, while simultaneously subjecting the amorphous film and the metal layer to a thermal treatment, thereby crystallizing the amorphous film.